Skip to main content
Log in

Studying the Adsorption of Fluorofullerene Molecules on the Surfaces of Solids at the Atomic Scale

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The initial stages of the adsorption of fluorinated fullerenes C60F18 at the Si(111)-7 × 7, Si(001)-2 × 1, and Cu(001)-1 × 1 surfaces are studied by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy in ultra-high vacuum. By combining STM imaging of individual molecules and ab initio calculations of the total energy, we demonstrate that polar C60F18 molecules interact with the surface with their fluorine atoms facing toward the surface. Molecules of the investigated fluorofullerenes enable surface modification at the nanoscale by local etching. By analyzing the experimental STM images and their computer-simulated counterparts, we show that the adsorbed fullerene molecules give up their F atoms to the Si surface. The binding energy between the fluorine atom and the Si surface is almost twice as high as that between the fluorine atom and the C60 molecule. The rate of disintegration of the fluorofullerene molecules adsorbed at the Cu(001) surface depends on the initial surface coverage. Initially, adsorbed C60F18 molecules lose some of their fluoride atoms, giving rise to two-dimensional islands consisting of C60 and C60Fn molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

Notes

  1. A monolayer indicates the number of fluorofullerene molecules in a densely packed monolayer on Cu(001) surface.

REFERENCES

  1. C. J. Chen, Introduction to Scanning Tunneling Microscopy (Oxford University Press, New York, Oxford, 1993).

    Google Scholar 

  2. M. Ratner, Nat. Nanotechnol. 8 (6), 378 (2013). https://doi.org/10.1038/nnano.2013.110

    Article  Google Scholar 

  3. L. N. Sidorov, M. A. Yurovskaya, A. Ya. Borshchevskii, et al., Fullerenes. Student’s Book (Ekzamen, Moscow, 2005) [in Russian].

    Google Scholar 

  4. R. F. Tuktarov, R. V. Khatymov, P. V. Shchukin, et al., JETP Lett. 90 (7), 515 (2009). https://doi.org/10.1134/S0021364009190047

    Article  Google Scholar 

  5. J. T. Sadowski, Y. Fujikawa, K. F. Kelly, et al., J. Cryst. Growth 229, 580 (2001).

    Article  Google Scholar 

  6. C. M. Aldao and J. M. Weaver, Prog. Surf. Sci. 68, 189 (2001).

    Article  Google Scholar 

  7. R. Z. Bakhtizin, A. I. Oreshkin, V. N. Mantsevich, et al., Bull. Russ. Acad. Sci.: Phys. 78 (1), 34 (2014). https://doi.org/10.3103/S1062873814010043

    Article  Google Scholar 

  8. O. V. Boltalina, J. Fluorine Chem. 101, 273 (2000). https://doi.org/10.1016/S0022-1139(99)00170-0

    Article  Google Scholar 

  9. R. Z. Bakhtizin, A. I. Oreshkin, P. Murugan, et al., Chem. Phys. Lett. 482 (4–6), 307 (2009). https://doi.org/10.1016/j.cplett.2009.10.020

    Article  Google Scholar 

  10. A. I. Oreshkin, R. Z. Bakhtizin, P. Murugan, et al., JETP Lett. 92 (7), 449 (2010). https://doi.org/10.1134/S0021364010190033

    Article  Google Scholar 

  11. T. Chen and D. Sarid, Mod. Phys. Lett. B 6 (16–17), 967 (1992).

    Article  Google Scholar 

  12. V. M. Mikoushkin, V. V. Shnitov, V. V. Bryzgalov, et al., J. Electron Spectrosc. Relat. Phenom. 168 (1–3), 25 (2008). https://doi.org/10.1016/j.elspec.2008.08.004

    Article  Google Scholar 

  13. M. Abel, A. Dmitriev, R. Fasel, et al., Phys. Rev. B 67, 245 407 (2003). https://doi.org/10.1103/PhysRevB.67.245407

    Article  Google Scholar 

  14. S. I. Oreshkin, D. A. Muzychenko, A. I. Oreshkin, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 12 (5), 866 (2018). https://doi.org/10.1134/S1027451018050051

    Article  Google Scholar 

  15. A. I. Oreshkin, D. A. Muzychenko, S. I. Oreshkin, et al., Nano Res. 11 (4), 2069 (2018). https://doi.org/10.1007/s12274-017-1823-9

    Article  Google Scholar 

  16. A. Kokali, Phys. Rev. B 31, 805 (1985).

    Article  Google Scholar 

  17. X.-W. Li, C. Stamp, and M. Scheffler, Phys. Rev. B 65, 075 407 (2002). https://doi.org/10.1103/PhysRevB.68.165412

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation for Basic Research (project nos. 16-02-00818 and 17-42-020616).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to R. Z. Bakhtizin or A. I. Oreshkin.

Additional information

Translated by A. Kukharuk

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakhtizin, R.Z., Oreshkin, A.I., Muzychenko, D.A. et al. Studying the Adsorption of Fluorofullerene Molecules on the Surfaces of Solids at the Atomic Scale. J. Surf. Investig. 13, 14–22 (2019). https://doi.org/10.1134/S1027451019010038

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451019010038

Keywords:

Navigation