Experience in the Development of a Configurable Laboratory UV Projection Photolithography System of Micron Resolution


The possibility of creating a laboratory UV photolithography setup with the help of commercially available components, such as optical-mechanical positioners and UV (ultraviolet) objective lenses, is discussed. Existing technical solutions concerning the optical systems of optical lithography, which rely on object‒image reduction, are considered. The main trends in the design of such systems based on lens optics are analyzed. The theoretical and practical aspects underlying the design of similar systems are examined taking into account the basic conditions of image obtainment: congruence to the initial object, ray-path telecentricity, and achievement of the required parameters by linear fields and resolution.

This is a preview of subscription content, log in to check access.


  1. 1.

    J. C. Love, et al., Langmuir 17 (19), 6005 (2001).

    Article  Google Scholar 

  2. 2.

    M. D. Huntington, T. W. Odom, and A. Portable, Small 7 (22), 3144 (2011).

    Article  Google Scholar 

  3. 3.

    M. J. Brady and A. Davidson, Rev. Sci. Instrum. 54 (10), 1292 (1983).

    Article  Google Scholar 

  4. 4.

    J. M. Behm, et al., Langmuir 12 (8), 2121 (1996).

    Article  Google Scholar 

  5. 5.

    Y. Suenaga, US Patent No. 6633365 (2003).

  6. 6.

    R. Hudyma, US Patent No. 6072852 (2000).

  7. 7.

    J. Zaumseil, et al., Nano Lett. 3 (9), 1223 (2003).

    Article  Google Scholar 

  8. 8.

    J. R. Franco, J. Havas, and L. J. Rompala, US Patent No. 4004044 (1977).

  9. 9.

    G. M. Whitesides and B. Grzybowski, Science 295 (556), 2418 (2002).

    Article  Google Scholar 

  10. 10.

    D. Qin, Y. Xia, and G. M. Whitesides, Nat. Protoc. 5 (3), 491 (2010).

    Article  Google Scholar 

  11. 11.

    L. J. Guo, Adv. Mater. 19 (4), 495 (2007).

    Article  Google Scholar 

  12. 12.

    M. M. Alkaisi, et al., Appl. Phys. Lett. 75 (22), 3560 (1999).

    Article  Google Scholar 

  13. 13.

    Y. Qin, et al., Int. J. Adv. Manuf. Technol. 47 (9), 821 (2010).

    Article  Google Scholar 

  14. 14.

    D. N. Frolov, Opt. Zh. 69 (9), 16 (2002).

    Google Scholar 

  15. 15.

    N. B. Skobeleva, M. N. Sokol’skii, and L. E. Levandovskaya, Opt. Zh. 78 (1), 45 (2011).

    Google Scholar 

Download references

Author information



Corresponding author

Correspondence to P. A. Prokopovich.

Additional information

Original Russian Text © P.A. Prokopovich, D.N. Frolov, V.N. Frolov, E.S. Klement’ev, A.I. Grunin, O.A. Dikaya, U.Yu. Koneva, G.G. Lyahov, D.D. Efimov, D.A. Serebrennikov, V.V. Molchanov, E.A. Severin, O.V. Toropova, A.Yu. Goikhman, 2018, published in Poverkhnost’, 2018, No. 8, pp. 10–23.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Prokopovich, P.A., Frolov, D.N., Frolov, V.N. et al. Experience in the Development of a Configurable Laboratory UV Projection Photolithography System of Micron Resolution. J. Synch. Investig. 12, 744–755 (2018). https://doi.org/10.1134/S1027451018040341

Download citation


  • UV photolithography
  • optical systems
  • objective lenses
  • lens optics