Advertisement

Investigation of the Morphology and Structure of Porous Hybrid 3D Scaffolds Based on Polycaprolactone Involving Silicate-Containing Hydroxyapatite

  • S. N. Gorodzha
  • M. A. Surmeneva
  • I. I. Selezneva
  • A. M. Ermakov
  • V. V. Zaitsev
  • R. A. SurmenevEmail author
Article
  • 21 Downloads

Abstract

The results of studies into microporous scaffolds based on polycaprolactone, in particular, involving nanoparticles and microparticles of modified (silicon-containing) hydroxyapatite (hybrid scaffolds) are presented. When hydroxyapatite particles are used during the electrospinning of polymer scaffolds, their porosity is found to increase substantially and a structure with nanofibers and microfibers can be created. X-ray phase analysis demonstrates that the characteristic lines of polycaprolactone and hydroxyapatite exist in the 3D hybrid scaffold structure. According to the data of infrared (IR) spectroscopy of the hydroxyapatitepowder precursor, (SiO4)4– ions are embedded in its lattice. The results of studies into the surface wettability indicate that the contact angles of wetting with water are smaller for hybrid scaffolds than for pure polycaprolactone scaffolds. Adhesive and proliferative activity tests of human mesenchymal stem cells (MSCs) performed upon hybrid-scaffold cultivation on the surface, as well as histologic investigations, indicate the high biocompatibility of the samples. On the basis of a polymerase chain reaction, it is revealed that the differentiation of MSCs occurs in the osteogenic direction. On account of a porous structure, hybrid scaffolds can be employed to recover bone-tissue defects.

Keywords

scaffold modified hydroxyapatite silicon regenerative medicine 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Hakkarainen, Degradable Aliphatic Polyesters (Springer, Berlin, Heidelberg, 2002), p.113.CrossRefGoogle Scholar
  2. 2.
    A. Gloria, F. Causa, T. Russo, et al., Biomacromolecules 13 (11), 3510 (2012).CrossRefGoogle Scholar
  3. 3.
    G. Tetteh, A. S. Khan, R. M. Delaine-Smith, et al., J. Mech. Behav. Biomed. Mater. 39, 95 (2014).CrossRefGoogle Scholar
  4. 4.
    J. Arends and W. L. Jongebloed, Caries Res. 11 (3), 186 (1977).CrossRefGoogle Scholar
  5. 5.
    M. Mastrogiacomo, A. Corsi, E. Francioso, et al., Tissue Eng. 12 (5), 1261 (2006).CrossRefGoogle Scholar
  6. 6.
    M. Ding, A. Odgaard, F. Linde, et al., J. Orthop. Res. 20 (3), 615 (2002).CrossRefGoogle Scholar
  7. 7.
    S. Kedem, J. Schmidt, Y. Paz, et al., Langmuir 21 (12), 5600 (2005).CrossRefGoogle Scholar
  8. 8.
    X. L. Deng, G. Sui, M. L. Zhao, et al., J. Biomater. Sci., Polym. Ed. 18 (1), 117 (2007).CrossRefGoogle Scholar
  9. 9.
    V. Thomas, S. Jagani, K. Johnson, et al., J. Nanosci. Nanotechnol. 6 (2), 487 (2006).CrossRefGoogle Scholar
  10. 10.
    F. Yang, S. K. Both, X. Yang, et al., Acta Biomater. 5 (9), 3295 (2009).CrossRefGoogle Scholar
  11. 11.
    A. G. Mikos, G. Sarakinos, M. D. Lyman, et al., Biotechnol. Bioeng. 42 (6), 716 (1993).CrossRefGoogle Scholar
  12. 12.
    H. Bittiger, R. H. Marchessault, and W. D. Niegisch, Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 26 (12), 1923 (1970).CrossRefGoogle Scholar
  13. 13.
    H. Miraoui and P. J. Marie, Gene 468 (1–2), 1 (2010).CrossRefGoogle Scholar
  14. 14.
    S. P. Grogan, T. Olee, K. Hiraoka, et al., Arthritis Rheum. 58 (9), 2754 (2008).CrossRefGoogle Scholar
  15. 15.
    J. Xu, Z. Li, Y. Hou, et al., Am. J. Transl. Res. 7 (12), 2527 (2015).Google Scholar
  16. 16.
    A. Augello and C. De Bari, Hum. Gene Ther. 21 (10), 1226 (2010).CrossRefGoogle Scholar
  17. 17.
    M. Bruderer, R. G. Richards, M. Alini, et al., Eur. Cells Mater. 28, 269 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • S. N. Gorodzha
    • 1
  • M. A. Surmeneva
    • 1
  • I. I. Selezneva
    • 2
  • A. M. Ermakov
    • 2
  • V. V. Zaitsev
    • 3
  • R. A. Surmenev
    • 1
    Email author
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia
  2. 2.Institute of Theoretical and Experimental BiophysicsRussian Academy of SciencesPushchinoRussia
  3. 3.Priorov Central Institute of Traumatology and OrthopedicsMoscowRussia

Personalised recommendations