Skip to main content
Log in

X-Ray Diffraction Analysis of the Influence of the Absorbed γ-Irradiation Dose on Ti3Al Structural Characteristics

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The influence of absorbed γ-quantum irradiation doses Dγ (60Co isotope) on the structural parameters of Ti3Al single-phase compounds is experimentally investigated. The structural characteristics are defined more accurately using X-ray diffractometry. On account of the results of structural studies, it is found that exposure to low γ-radiation doses (e.g., Dγ = 1 × 103 Gy) generates the nonequilibrium state of the Ti3Al structure. An increase in the absorbed dose (to Dγ = 1 × 105 Gy) stimulates the formation of a metastable radiation-induced state, which is identified by diffraction-reflection splitting, an increase in the crystal-lattice volume, and changes in the parameters of the fine structure (the coherent-scattering-region size decreases to 13 nm, and the defect concentration increases).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. M. A. Sekkina and K. M. Eisabawy, Physica 377, 411 (2002).

    Article  Google Scholar 

  2. S. V. Rogozhkin, N. A. Iskandarov, A. A. Aleev, A. G. Zaluzhnyi, R. P. Kuibida, T. V. Kulevoi, B. B. Chalykh, M. V. Leont’eva-Smirnova, and E. M. Mozhanov, Inorg. Mater.: Appl. Res. 4 (5), 426 (2013).

    Article  Google Scholar 

  3. K. Sapnar, V. Bhoraskar, and S. Dhole, in Proc. Particle Accelerator Conference (New York, 2011), p.1.

    Google Scholar 

  4. A. V. Gradoboev and A. P. Surzhikov, Radiation Resistance of Microwave Devices on the Base of Gallium-Arsenide (Tomsk Polytechnic Univ., Tomsk, 2005) [in Russian].

    Google Scholar 

  5. V. A. Stepanov and V. S. Khmelevskaya, Tech. Phys. 56 (9), 1272 (2011).

    Article  Google Scholar 

  6. Z. Lu, F. G. Faulkner, R. B. Jones, and P. E. J. Flewitt, J. ASTM Int. 2 (8), 180 (2005).

    Article  Google Scholar 

  7. M. V. Loginova, V. I. Yakovlev, A. A. Sitnikov, V. Yu. Filimonov, A. V. Sobachkin, A. Z. Negodyaev, and A. V. Gradoboev, Aktual. Probl. Mashinostr., No. 3, 398 (2016).

    Google Scholar 

  8. A. Shalaev and A. Adamenko, Radiation Stimulated Variation in Electron Structure (Atomizdat, Moscow, 1977) [in Russian].

    Google Scholar 

  9. K. E. Sickafus, E. A. Kotomin, and B. P. Uberuaga, Radiation Effects in Solids, NATO Science Series, Vol. 235 (Springer, 2007).

  10. T. D. Dzhafarov, Radiation Stimulated Diffusion in Semiconductors (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  11. V. G. Chuprina and I. M. Shalya, in Proc. 10th Int. Conference ICHMS-07 (Sudak, 2007), p.38.

    Google Scholar 

  12. N. A. Nochovnaya, P. V. Panin, A. S. Kochetkov, and K. A. Bokov, Met. Sci. Heat Treat. 56 (7–8), 364 (2014).

    Article  Google Scholar 

  13. F. Appel, M. Ohring, J. D. H. Paul, and U. Lorenz, in Proc. 2nd Int. Symposium “Structural Intermetallics” (Jackson Hole, WY, 2001), p.63.

    Google Scholar 

  14. V. Yu. Filimonov, A. A. Sitnikov, M. V. Loginova, A. Z. Negodyaev, V. I. Yakovlev, and D. V. Shreifer, Fundam. Probl. Sovrem. Materialoved. 12 (1), 16 (2015).

    Google Scholar 

  15. V. Yu. Filimonov, A. A. Sytnikov, V. I. Yakovlev, M. V. Loginova, A. V. Afanasyev, and A. Z. Negodyaev, Appl. Mech. Mater. 621, 71 (2014).

    Article  Google Scholar 

  16. M. V. Loginova, V. Yu. Filimonov, V. I. Yakovlev, A. A. Sytnikov, A. Z. Negodyaev, and D. V. Shreifer, Appl. Mech. Mater. 788, 117 (2015).

    Article  Google Scholar 

  17. N. P. Dikii, A. N. Dovbnya, E. P. Medvedeva, I. D. Fedorets, N. P. Khlapova, Yu. V. Lyashko, and D. V. Medvedev, J. Kharkiv Natl. Univ. 1059, 83 (2013).

    Google Scholar 

  18. D. Li and H. Haneda, Chemospera 51, 129 (2003).

    Article  Google Scholar 

  19. S. T. Konobeevskii and F. P. Butra, Nuclear Radiation Influence onto Materials (USSR Acad. Sci., 1962), p.251.

    Google Scholar 

  20. V. S. Khmelevskaya, N. Yu. Bogdanov, and M. N. Kordo, Fiz. Khim. Obrab. Mater., No. 2, 14 (2008).

    Google Scholar 

  21. N. P. Dymchenko, L. M. Shishlyannikova, and N. N. Yaroslavtseva, Appar. Metody Rentgenovskogo Anal., No. 15, 37 (1974).

    Google Scholar 

  22. D. M. Kheiker and L. S. Zevin, X-ray Diffractometry (Fizmatgiz, Moscow, 1963) [in Russian].

    Google Scholar 

  23. A. A. Sytnikov, M. V. Loginova, V. I. Yakovlev, V. Yu. Filimonov, A. V. Afanas’ev, A. Z. Negodyaev, V. V. Solov’ev, D. V. Shreifer, and M. A. Korchagin, RF Patent No. 2557924, Byull. Izobret., No. 21 (2015).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Loginova.

Additional information

Original Russian Text © M.V. Loginova, V.I. Yakovlev, A.A. Sitnikov, V.Yu. Filimonov, A.V. Sobachkin, A.V. Gradoboev, 2018, published in Poverkhnost’, 2018, No. 5.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loginova, M.V., Yakovlev, V.I., Sitnikov, A.A. et al. X-Ray Diffraction Analysis of the Influence of the Absorbed γ-Irradiation Dose on Ti3Al Structural Characteristics. J. Surf. Investig. 12, 480–484 (2018). https://doi.org/10.1134/S1027451018030126

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451018030126

Keywords

Navigation