Skip to main content
Log in

Structural Analysis of Aluminum Oxyhydroxide Aerogel by Small Angle X-Ray Scattering

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

An Erratum to this article was published on 01 May 2018

This article has been updated

Abstract

The work presents studies on the microstructure and mesostructure of nanostructured aluminum oxyhydroxide formed as a high porous monolithic material through the surface oxidation of aluminum liquidmetal solution in mercury in a temperature- and humidity-controlled air atmosphere. The methods of X-ray diffraction analysis, thermal analysis, the low temperature adsorption of nitrogen vapors, transmission electron microscopy, small-angle and very small-angle neutron scattering, and small-angle X-ray scattering are used for comprehensive investigation of the samples synthesized at 25°С as well as that annealed at temperatures up to 1150°C. It is found that the structure of the monolithic samples can be described within the framework of a three-level model involving primary heterogeneities (typical length scale of rc ≈ 9–19 Å), forming fibrils (cross-sectional radius R ≈ 36–43 Å and length L ≈ 3200–3300 Å) or lamellae (thickness T ≈ 110 Å and width W ≈ 3050 Å) which, in turn, are integrated into large-scale aggregates (typical size R c ≈ 1.25–1.4 μm) with an insignificant surface roughness. It is shown that a high specific surface (~200 m2/g) typical for the initial sample is maintained upon its thermal annealing up to 900°С, and it decreases to 100 m2/g after heat treatment at 1150°С due to fibrillary agglomeration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 18 June 2018

    The title of the article should read as follows:

References

  1. H. Wislicenus, Z. Chem. Ind. Kolloide 2, 11 (1908).

    Article  Google Scholar 

  2. W. Cheng, F. Rechberger, and M. Niederberger, Nanoscale 8, 14074 (2016).

    Article  Google Scholar 

  3. S. M. Jung, H. Y. Jung, W. Fang, et al., Nano Lett. 14, 1810 (2014).

    Article  Google Scholar 

  4. Y. Tang, S. Gong, Y. Chen, et al., ACS Nano 8, 5707 (2014).

    Article  Google Scholar 

  5. Z. Lin, Z. Zeng, X. Gui, et al., Adv. Energy Mater. 6, 1600554 (2016).

    Article  Google Scholar 

  6. J.-L. Vignes, L. Mazerolles, and D. Michel, Key Eng. Mater. 132–136, 432 (1997).

    Article  Google Scholar 

  7. P. N. Martynov, R. Sh. Askhadullin, P. A. Yudintsev, and A. N. Khodan, Nov. Prom. Tekhnol., No. 4, 48 (2008).

    Google Scholar 

  8. J.-L. Vignes, C. Frappart, T. Di Costanzo, et al., J. Mater. Sci. 43, 1234 (2008).

    Article  Google Scholar 

  9. V. E. Asadchikov, R. S. Askhadullin, V. V. Volkov, et al., JETP Lett. 101, 556 (2015).

    Article  Google Scholar 

  10. G. Goerigk and Z. Varga, J. Appl. Crystallogr. 44, 337 (2011).

    Article  Google Scholar 

  11. A. Radulescu, E. Kentzinger, J. Stellbrink, et al., Neutron News 16, 18 (2005).

    Article  Google Scholar 

  12. G. D. Wignall and F. S. Bates, J. Appl. Crystallogr. 20, 28 (1987).

    Article  Google Scholar 

  13. http://iffwww.iff.kfa-juelich.de/~pipich/dokuwiki/doku.php/qtikws.

  14. W. Schmatz, T. Springer, J. Schelten, and K. Ibel, J. Appl. Crystallogr. 7, 96 (1974).

    Article  Google Scholar 

  15. http://www.esrf.eu/computing/scientific/FIT2D/.

  16. P. Euzen, P. Raybaud, X. Krokidis, et al., Handbook of Porous Solids, Ed. by F. Schüth, (Wiley-VCH, Weinheim, 2008).

  17. S. Brunauer, L. S. Deming, W. E. Deming, and E. Teller, J. Am. Chem. Soc. 62, 1723 (1940).

    Article  Google Scholar 

  18. J. H. De Boer, The Structure and Properties of Porous Materials (Colston Papers, London, 1958), p. 68.

    Google Scholar 

  19. P. Debye and A. M. J. Bueche, Ann. Phys. (N. Y., NY, U. S.) 20, 518 (1949).

    Google Scholar 

  20. V. Luzzati, Acta Crystallogr. 13, 939 (1960).

    Article  Google Scholar 

  21. O. Kratky, Prog. Biophys. Mol. Biol. 13, 105 (1963).

    Article  Google Scholar 

  22. Small-Angle X-ray Scattering, Ed. by O. Glatter and O. Kratky (Academic Press, London, 1982), p. 155.

    Google Scholar 

  23. R. P. Hjelm, P. Thiyagarajan, and H. Alkan-Onyuksel, J. Phys. Chem. 96, 8653 (1992).

    Article  Google Scholar 

  24. P. D. Southon, J. R. Bartlett, J. L. Woolfrey, and B. Ben-Nissan, Chem. Mater. 14, 4313 (2002).

    Article  Google Scholar 

  25. G. Beaucage, T. A. Ulibarri, E. P. Black, and D. W. Schaefer, in ACS Symposium Series, Vol. 585: Hybrid Organic-Inorganic Composites, Ed. by J. Mark, et al. (American Chemical Society, Washington DC, 1985), p. 97.

  26. M. Štěpánek, P. Matějíček, K. Procházka, et al., Langmuir 27, 5275 (2011).

    Article  Google Scholar 

  27. T. V. Khamova, O. A. Shilova, G. P. Kopitsa, V. Angelov, A. Zhigunov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10 (1), 113 (2016).

    Article  Google Scholar 

  28. B. Hammouda, J. Appl. Crystallogr. 43, 716 (2010).

    Article  Google Scholar 

  29. P. W. Schmidt, D. Avnir, D. Levy, et al., J. Chem. Phys. 94, 1474 (1991).

    Article  Google Scholar 

  30. J. Teixera, in On Growth and Form. Fractal and Non-Fractal Patterns in Physics, Ed. by H. E. Stanley and N. Ostrovsky (Martinus Nijloff Publ., Boston, 1986), p. 145.

  31. G. Porod, Kolloid-Z. 125, 51 (1952).

    Article  Google Scholar 

  32. G. Porod, Kolloid-Z. 125, 109 (1952).

    Google Scholar 

  33. P. Wong, Phys. Rev. B 32, 7417 (1985).

    Article  Google Scholar 

  34. P. W. Schmidt, Modern Aspects of Small-Angle Scattering, Ed. by H. Brumberger (Kluwer Academic Publ., Dordrecht, 1995), p. 1.

  35. Guinier, A. and Fournet, G., Small Angle Scattering of X-rays (John Wiley and Sons, New York, 1955).

    Google Scholar 

  36. G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995).

    Article  Google Scholar 

  37. N. N. Gubanova, A. Ye. Baranchikov, G. P. Kopitsa, et al., Ultrason. Sonochem. 24, 230 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. N. Khodan.

Additional information

Original Russian Text © A.N. Khodan, G.P. Kopitsa, Kh.E. Yorov, A.E. Baranchikov, V.K. Ivanov, A. Feoktystov, V. Pipich, 2018, published in Poverkhnost’, 2018, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khodan, A.N., Kopitsa, G.P., Yorov, K.E. et al. Structural Analysis of Aluminum Oxyhydroxide Aerogel by Small Angle X-Ray Scattering. J. Surf. Investig. 12, 296–305 (2018). https://doi.org/10.1134/S102745101802026X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745101802026X

Keywords

Navigation