Skip to main content
Log in

Energy Spectrum of Charge Carriers in Elastically Strained Assemblies of Ge/Si Quantum Dots

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The results of studying the energy spectrum of electrons and holes localized in second-type Ge/Si heterostructures with Ge quantum dots are presented. In such structures, holes are localized at Ge quantum dots, and electrons, in three-dimensional quantum wells, which form in Si at the Ge—Si interface because of inhomogeneous deformations that appear as a result of the difference between the Ge and Si lattice constants. It is shown that changes in the deformations in the assembly of quantum dots as a result of a variation in their spatial arrangement significantly changes the binding energy of electrons, the position of their localization at quantum dots, the binding energy and wave-function symmetry of holes at double quantum dots (artificial molecules), and the exchange interaction of electrons and holes in the exciton composition. A practically important result of the presented data is the development of approaches to increase the luminescence quantum efficiency and the absorption coefficient in assemblies of quantum dots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. Z. Bo, L. P. Rokhinson, N. Yao, et al., J. Appl. Phys. 100 (9), 94317 (2006). doi 10.1063/1.2358398

    Article  Google Scholar 

  2. M. Jo, T. Uchida, A. Tsurumaki-Fukuchi, et al., J. Appl. Phys. 118, 214305 (2015). doi 10.1063/1.4936790

    Article  Google Scholar 

  3. M. Kobo, M. Yamamoto, H. Ishii, and Y. Noguchi, J. Appl. Phys. 120, 164306 (2016). doi 10.1063/1.4966175

    Article  Google Scholar 

  4. N. Y. Morgan, D. Abusch-Magder, M. A. Kastner, et al., J. Appl. Phys. 89, 410 (2001). doi 10.1063/1.1322066

    Article  Google Scholar 

  5. K. V. Reich, T. Chen, and B. I. Shklovskii, Phys. Rev. B 89, 235303 (2014). doi 10.1103/PhysRevB.89.235303

    Article  Google Scholar 

  6. M. A. Rowe, E. J. Gansen, M. Greene, et al., Appl. Phys. Lett. 89, 253505 (2006). doi 10.1063/1.2403907

    Article  Google Scholar 

  7. D. S. Rao, T. Szkopek, H. D. Robinson, et al., J. Appl. Phys. 98, 114507 (2005). doi 10.1063/1.2134888

    Article  Google Scholar 

  8. A. J. Shields, M. P. O’Sullivan, I. Farrer, et al., Appl. Phys. Lett. 76, 3673 (2000). doi 10.1063/1.126745

    Article  Google Scholar 

  9. E. J. Gansen, M. A. Rowe, S. D. Harrington, et al., J. Appl. Phys. 114, 093103 (2013). doi 10.1063/1.4820474

    Article  Google Scholar 

  10. S. Deshpande, T. Frost, A. Hazari, and P. Bhattacharya, Appl. Phys. Lett. 105, 141109 (2014). doi 10.1063/1.4897640

    Article  Google Scholar 

  11. J. S. De Sousa, A. V. Thean, J. P. Leburton, and V. N. Freire, J. Appl. Phys. 92, 6182 (2002). doi 10.1063/1.1509105

    Article  Google Scholar 

  12. G. Iannaccone, A. Trellakis, and U. Ravaioli, J. Appl. Phys. 84, 5032 (1998). doi 10.1063/1.368750

    Article  Google Scholar 

  13. S. M. Islam, S. Chowdhury, K. Sarkar, et al., AIP Conf. Proc. 1665, 050035 (2015). doi 10.1063/1.4917676

    Article  Google Scholar 

  14. S. Kundu, N. N. Halder, P. Biswas, et al., Appl. Phys. Lett. 101, 212108 (2012). doi 10.1063/1.4767522

    Article  Google Scholar 

  15. Y. Liu, S. Tang, and S. K. Banerjee, Appl. Phys. Lett. 88, 213504 (2006). doi 10.1063/1.2202749

    Article  Google Scholar 

  16. A. Marent, M. Geller, A. Schliwa, et al., Appl. Phys. Lett. 91, 242109 (2007). doi 10.1063/1.2824884

    Article  Google Scholar 

  17. P. Maier, F. Hartmann, M. Emmerling, et al., Appl. Phys. Lett. 105, 053502 (2014). doi 10.1063/1.4892355

    Article  Google Scholar 

  18. A. I. Yakimov, N. P. Stepina, A. V. Dvurechenskii, et al., Semicond. Sci. Technol. 15, 1125 (2000). doi 10.1088/0268-1242/15/12/305

    Article  Google Scholar 

  19. A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, et al., Phys. Rev. B 62, 283 (2000). doi 10.1103/Phys-RevB.62.R16283

    Article  Google Scholar 

  20. A. Yakimov, A. Dvurechenskii, A. Nikiforov, et al., Phys. Rev. B 67, 125318 (2003). doi 10.1103/Phys-RevB.67.125318

    Article  Google Scholar 

  21. A. I. Yakimov, V. V. Kirienko, A. A. Bloshkin, et al., JETP Lett. 102 (9), 594 (2015).

    Article  Google Scholar 

  22. A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, et al., Appl. Phys. Lett. 107, 213502 (2015). doi 10.1063/1.4936340

    Article  Google Scholar 

  23. A. I. Yakimov, A. A. Bloshkin, V. A. Timofeev, et al., Appl. Phys. Lett. 100, 053507 (2012). doi 10.1063/1.3682304

    Article  Google Scholar 

  24. J. Tersoff, C. Teichert, and M. G. Lagally, Phys. Rev. Lett. 76, 1675 (1996). doi 10.1103/PhysRev-Lett.76.1675

    Article  Google Scholar 

  25. A. I. Yakimov, V. A. Markov, A. V. Dvurechenskii, and O. P. Pchelyakov, Philos. Mag. B 65, 701 (1992). doi 10.1080/13642819208204906

    Article  Google Scholar 

  26. A. V. Nenashev and A. V. Dvurechenskii, J. Exp. Theor. Phys. (JETP) 91 (3), 497 (2000).

    Article  Google Scholar 

  27. A. V. Dvurechenskii, A. V. Nenashev, and A. I. Yakimov, Nanotechnology 13, 75 (2002).

    Article  Google Scholar 

  28. A. I. Yakimov, G. Y. Mikhalyov, and A. V. Dvurechenskii, Nanotechnology 19, 55202 (2008). doi 10.1088/0957-4484/19/05/055202

    Article  Google Scholar 

  29. A. I. Yakimov, G. Yu. Mikhalev, A. V. Nenashev, and A. V. Dvurechenskii, JETP Lett. 85 (9), 429 (2007).

    Article  Google Scholar 

  30. A. I. Yakimov, G. Y. Mikhalyov, A. V. Dvurechenskii, and A. I. Nikiforov, J. Appl. Phys. 102, 093714 (2007). doi 10.1063/1.2809401

    Article  Google Scholar 

  31. A. V. Nenashev, A. V. Dvurechenskii, and A. F. Zinovieva, Phys. Rev. B 67, 205301 (2003). doi 10.1103/PhysRevB.67.205301

    Article  Google Scholar 

  32. A. V. Nenashev, A. V. Dvurechenskii, and A. F. Zinov’eva, J. Exp. Theor. Phys. (JETP) 96 (2), 321 (2003).

    Article  Google Scholar 

  33. F. Pollak and M. Cardona, Phys. Rev. 172, 816 (1982). doi 10.1103/PhysRev.172.816

    Article  Google Scholar 

  34. M. Califano and P. Harrison, J. Appl. Phys. 91, 389 (2002). doi 10.1063/1.1410318

    Article  Google Scholar 

  35. A. I. Yakimov, A. A. Bloshkin, and A. V. Dvurechenskii, Phys. Rev. B 78, 165310 (2008). doi 10.1103/PhysRevB.78.165310

    Article  Google Scholar 

  36. A. I. Yakimov, A. A. Bloshkin, A. I. Nikiforov, and A. V. Dvurechenskii, Microelectron. J. 40, 785 (2009). doi 10.1016/j.mejo.2008.11.015

    Article  Google Scholar 

  37. A. I. Yakimov, A. A. Bloshkin, and A. V. Dvurechenskii, Semicond. Sci. Technol. 24, 95002 (2009). doi 10.1088/0268-1242/24/9/095002

    Article  Google Scholar 

  38. O. Schmidt, K. Eberl, and Y. Rau, Phys. Rev. B 62, 16715 (2000). doi 10.1103/PhysRevB.62.16715

    Article  Google Scholar 

  39. C. G. Van de Walle, Phys. Rev. B 39, 1871 (1989). doi 10.1103/PhysRevB.39.1871

    Article  Google Scholar 

  40. C. Van de Walle and R. Martin, Phys. Rev. B 34, 5621 (1986). doi 10.1103/PhysRevB.34.5621

    Article  Google Scholar 

  41. J. I. Climente, M. Korkusinski, G. Goldoni, and P. Hawrylak, Phys. Rev. B 78, 115323 (2008). doi 10.1103/PhysRevB.78.115323

    Article  Google Scholar 

  42. A. I. Yakimov, V. A. Timofeev, A. I. Nikiforov, and A. V. Dvurechenskii, JETP Lett. 94 (10), 744 (2011).

    Article  Google Scholar 

  43. M. F. Doty, J. I. Climente, M. Korkusinski, et al., Phys. Rev. Lett. 102, 047401 (2009). doi 10.1103/PhysRev-Lett.102.047401

    Article  Google Scholar 

  44. N. D. Zakharov, V. G. Talalaev, P. Werner, et al., Appl. Phys. Lett. 83, 3084 (2003). doi 10.1063/1.1618377

    Article  Google Scholar 

  45. K. W. Sun, S. H. Sue, and C. W. Liu, Phys. E (Amsterdam, Neth.) 28, 525 (2005). doi 10.1016/j.physe.2005.05.063

    Article  Google Scholar 

  46. W. H. Chang, A. T. Chou, W. Y. Chen, et al., Appl. Phys. Lett. 83, 2958 (2003). doi 10.1063/1.1616665

    Article  Google Scholar 

  47. M. El. Kurdi, P. Boucaud, S. Sauvage, et al., Phys. E (Amsterdam, Neth.) 16, 523 (2003). doi 10.1016/S1386-9477(02)00633-1

    Article  Google Scholar 

  48. A. Alguno, N. Usami, T. Ujihara, et al., Appl. Phys. Lett. 83, 1258 (2003). doi 10.1063/1.1600838

    Article  Google Scholar 

  49. T. Meyer, M. Klemenc, and H. von Känel, Phys. Rev. B 60, R8493 (1999). doi 10.1103/PhysRevB.60.R8493

    Article  Google Scholar 

  50. A. I. Yakimov, A. V. Dvurechenskii, N. P. Stepina, et al., Zh. Eksp. Teor. Fiz. 113 (3), 574 (1998).

    Google Scholar 

  51. A. I. Yakimov, A. V. Dvurechenskii, A. A. Bloshkin, and A. V. Nenashev, JETP Lett. 83 (4), 156 (2006).

    Article  Google Scholar 

  52. A. I. Yakimov, A. V. Dvurechenskii, A. I. Nikiforov, et al., Phys. Rev. B 73, 115333 (2006). doi 10.1103/Phys-RevB.73.115333

    Article  Google Scholar 

  53. K. Brunner, Rep. Prog. Phys. 65, 27 (2002). doi 10.1088/0034-4885/65/1/202

    Article  Google Scholar 

  54. A. G. Milekhin, A. I. Nikiforov, M. Y. Ladanov, et al., Phys. E (Amsterdam, Neth.) 21, 464 (2004). doi 10.1016/j.physe.2003.11.051

    Article  Google Scholar 

  55. P. N. Keating, Phys. Rev. 145, 637 (1966). doi 10.1103/PhysRev.145.637

    Article  Google Scholar 

  56. R. M. Martin, Phys. Rev. B 1, 4005 (1970). doi 10.1103/PhysRevB.1.4005

    Article  Google Scholar 

  57. A. I. Yakimov, V. V. Kirienko, V. A. Armbrister, et al., Phys. Rev. B 90, 35430 (2014). doi 10.1103/Phys-RevB.90.035430

    Article  Google Scholar 

  58. A. I. Yakimov, V. V. Kirienko, A. A. Bloshkin, et al., JETP Lett. 101 (11), 750 (2015).

    Article  Google Scholar 

  59. A. I. Yakimov, V. V. Kirienko, A. A. Bloshkin, et al., Appl. Phys. Lett. 106, 032104 (2015). doi 10.1063/1.4906522

    Article  Google Scholar 

  60. D. Grützmacher, T. Fromherz, C. Dais, et al., Nano Lett. 7, 3150 (2007). doi 10.1021/nl0717199

    Article  Google Scholar 

  61. A. F. Zinovieva, A. I. Nikiforov, V. A. Timofeev, et al., Phys. Rev. B 88, 235308 (2013). doi 10.1103/Phys-RevB.88.235308

    Article  Google Scholar 

  62. A. F. Zinovieva, A. V. Dvurechenskii, N. P. Stepina, et al., Phys. Rev. B 77, 115319 (2008). doi 10.1103/PhysRevB.77.115319

    Article  Google Scholar 

  63. Z. Wilamowski and W. Jantsch, Phys. Rev. B 69, 035328 (2004). doi 10.1103/PhysRevB.69.035328

    Article  Google Scholar 

  64. A. F. Zinovieva, V. A. Zinovyev, A. I. Nikiforov, et al., JETP Lett. 104 (12), 823 (2016). doi 10.1134/S0021364016240061

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Bloshkin.

Additional information

Original Russian Text © A.A. Bloshkin, A.I. Yakimov, A.F. Zinovieva, V.A. Zinoviev, A.V. Dvurechenskii, 2018, published in Poverkhnost’, 2018, No. 4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bloshkin, A.A., Yakimov, A.I., Zinovieva, A.F. et al. Energy Spectrum of Charge Carriers in Elastically Strained Assemblies of Ge/Si Quantum Dots. J. Surf. Investig. 12, 306–316 (2018). https://doi.org/10.1134/S1027451018020210

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451018020210

Keywords

Navigation