Skip to main content
Log in

Investigation of Plastically Deformed TRIP-Composites by Neutron Diffraction and Small-Angle Neutron Scattering Methods

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The main parameters of the microstructure of TRIP (TRansformation Induced Plasticity) composites with an austenitic matrix and a ZrO2 zirconium-dioxide reinforcing phase subjected to plastic deformation of different degrees (compressive uniaxial load) are studied by neutron diffraction and small-angle neutron scattering. A series of composite material samples with different contents of the ZrO2 ceramic phase (0, 10, 20, 30, and 100 wt %) are prepared by the powder metallurgy method using hot pressing. In the region of plastic deformation at load values above 650 MPa, two phases are observed in the austenitic matrix: cubic α'-martensite and hexagonal ε-martensite. Data on the lattice strains of the observed phases, dislocation density in the austenitic matrix, and characteristic sizes of the martensitic-phase particles are obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Martin, S. Richter, S. Decker, et al., Steel Res. Int. 82 (9), 1133 (2011). http://dx.doi.org/10.1002/srin.201100099

    Article  Google Scholar 

  2. R. Eckner, M. Krampf, C. Segel, et al., Mech. Compos. Mater. 51 (6), 797 (2016). http://dx.doi.org/10.1007/s11029-016-9541-z

    Article  Google Scholar 

  3. D. Ehinger, L. Krüger, U. Martin, et al., Int. J. Solids Struct. 66, 207 (2015). http://dx.doi.org/10.1016/j.ijsolstr.2015.02.052

    Article  Google Scholar 

  4. A. Glage, S. Martin, S. Decker, et al., Steel Res. Int. 83 (6), 554 (2012). http://dx.doi.org/10.1002/srin.201100288

    Article  Google Scholar 

  5. D. Rafaja, C. Krbetschek, D. Borisova, et al., Thin Solid Films 530, 105 (2013). http://dx.doi.org/10.1016/j.tsf.2012.07.067

    Article  Google Scholar 

  6. D. Borisova, V. Klemm, S. Martin, et al., Adv. Eng. Mater. 15 (7), 571 (2013). http://dx.doi.org/10.1002/adem.201200327

    Article  Google Scholar 

  7. S. Martin, C. Ullrich, D. Simek, et al., J. Appl. Crystallogr. 44 (7), 779 (2011). http://dx.doi.org/10.1107/S0021889811019558

    Article  Google Scholar 

  8. H. Arashi, T. Yagi, S. Akimoto, et al., Phys. Rev. B. 41 (7), 4309 (1990). http://doi.org/10.1103/Phys-RevB.41.4309

    Article  Google Scholar 

  9. P. M. Kelly and L. R. F. Rose, Prog. Mater. Sci. 47 (5), 463 (2002). http://www.sciencedirect.com/science/article/pii/S0079642500000050.

    Article  Google Scholar 

  10. F. Frey, H. Boysen, and T. Vogt, Acta Crystallogr., Sect. B: Struct. Sci. 46, 724 (1990). http://dx.doi.org/10.1107/S0108768190007509

    Article  Google Scholar 

  11. S. Guk, W. Müller, K. Pranke, and R. Kawalla, Mater. Sci. Appl. 5, 812 (2014). http://dx.doi.org/10.4236/msa.2014.511081

    Google Scholar 

  12. S. Guk, D. Milisova, and K. Pranke, Key Eng. Mater. 684, 86 (2016). http://dx.doi.org/10.4028/www.scientific. net/KEM.684.86

    Article  Google Scholar 

  13. S. Guk, K. Pranke, and W. Muller, ISIJ Int. 54 (10), 2416 (2014). http://doi.org/10.2355/isijinternational. 54.2416

    Article  Google Scholar 

  14. G. D. Bokuchava, V. L. Aksenov, A. M. Balagurov, et al., Appl. Phys. A: Mater. Sci. Process. 74, s86 (2002). http://dx.doi.org/10.1007/s003390201750

    Article  Google Scholar 

  15. G. D. Bokuchava, I. V. Papushkin, A. V. Tamonov, et al., Rom. J. Phys. 61 (3–4), 491 (2016). http://www. nipne.ro/rjp/2016_61_3-4/0491_0505.pdf.

    Google Scholar 

  16. Y. M. Ostanevich, Makromol. Chem., Macromol. Symp. 15, 91 (1988).

    Article  Google Scholar 

  17. J. Rodríguez-Carvajal, Phys. B 192, 55 (1993). http://doi.org/10.1016/0921-4526(93)90108-I

    Article  Google Scholar 

  18. T. Ungár, I. Dragomir, Á. Révész, et al., J. Appl. Crystallogr. 32, 992 (1999). http://dx.doi.org/10.1107/S0021889899009334

    Article  Google Scholar 

  19. G. D. Bokuchava, I. V. Papushkin, V. I. Bobrovskii, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (1), 44 (2015). https://doi.org/10.1134/S1027451015010048.

    Article  Google Scholar 

  20. G. D. Bokuchava, Rom. J. Phys. 61 (5–6), 903 (2016). http://www.nipne.ro/rjp/2016_61_5-6/0903_0925.pdf.

    Google Scholar 

  21. G. Beaucage, J. Appl. Crystallogr. 29, 134 (1996). http://doi.org/10.1107/S0021889895011605

    Article  Google Scholar 

  22. I. Bressler, B. R. Pauw, and A. F. Thünemann, J. Appl. Crystallogr. 48, 962 (2015). http://dx.doi.org/10.1107/S1600576715007347

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. D. Bokuchava.

Additional information

Original Russian Text © G.D. Bokuchava, Yu.E. Gorshkova, I.V. Papushkin, S.V. Guk, R. Kawalla, 2018, published in Poverkhnost’, 2018, No. 3.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bokuchava, G.D., Gorshkova, Y.E., Papushkin, I.V. et al. Investigation of Plastically Deformed TRIP-Composites by Neutron Diffraction and Small-Angle Neutron Scattering Methods. J. Surf. Investig. 12, 227–232 (2018). https://doi.org/10.1134/S1027451018020052

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451018020052

Keywords

Navigation