Study of Thin Film Coatings by IR Phonon-Polariton Spectroscopy Methods

Article
  • 2 Downloads

Abstract

The methods of vibrational spectroscopy in far and near fields are used for studying thin (nanometer thick) AlN and MgO films on sapphire. It is shown that in the case of monolayer AlN films formed by the method of sapphire nitridation, the frequencies of longitudinal optical phonons of the film decrease in comparison with those of a single crystal, but the frequencies of transverse optical phonons increase. This means that the crystal structures of the film and the surface of the sapphire substrate modify. The solid solution (Al2O3)1 – x(AlN) x of variable composition appears in the transition layer (at the interface); the parameters of the AlN crystal cell change smoothly. In the case of the epitaxial growth of MgO films on sapphire, during the first stage, most likely, only the crystal structure of the sapphire surface is modified because the frequencies of the optical phonons of MgO films and the single crystal are the same. With an increase in the thickness of the MgO film, tensile stresses are accumulated in it, changing the frequencies of the optical phonons.

Keywords

infrared spectroscopy surface phonon-polariton attenuated total reflection thin films AlN MgO sapphire 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Razeghi and M. Henini, Optoelectronic Devices: IIINitrides (Elsevier, Amsterdam, 2004).Google Scholar
  2. 2.
    Y. Taniyasu, M. Kasu, and T. Makimoto, Nature 441, 325 (2006).CrossRefGoogle Scholar
  3. 3.
    E. A. Vinogradov and I. A. Dorofeev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (1), 10 (2014).CrossRefGoogle Scholar
  4. 4.
    E. A. Vinogradov and I. A. Dorofeev, Bull. Russ. Acad. Sci.: Phys. 74 (7), 934 (2010).CrossRefGoogle Scholar
  5. 5.
    I. A. Dorofeev and E. A. Vinogradov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6 (5), 796 (2012).CrossRefGoogle Scholar
  6. 6.
    J. W. Matthews and A. E. Blakeslee, J. Cryst. Growth 27, 118 (1974).Google Scholar
  7. 7.
    E. A. Vinogradov and I. A. Dorofeev, Usp. Fiz. Nauk 179 (5), 449 (2009).CrossRefGoogle Scholar
  8. 8.
    I. A. Dorofeyev and E. A. Vinogradov, Phys. Rep. 504, 75 (2011).CrossRefGoogle Scholar
  9. 9.
    V. M. Agranovich and A. G. Malshukov, Opt. Commun. 11, 169 (1974).CrossRefGoogle Scholar
  10. 10.
    E. A. Vinogradov, N. N. Novikova, and V. A. Yakovlev, Usp. Fiz. Nauk 184 (6), 653 (2014).CrossRefGoogle Scholar
  11. 11.
    V. A. Yakovlev, N. N. Novikova, E. A. Vinogradov, et al., Phys. Lett. A 373, 2382 (2009).CrossRefGoogle Scholar
  12. 12.
    V. A. Yakovlev, N. N. Novikova, E. A. Vinogradov, et al., J. Phys.: Conf. Ser. 210, 012027 (2010).Google Scholar
  13. 13.
    N. N. Novikova, V. A. Yakovlev, E. A. Vinogradov, et al., Appl. Surf. Sci. 267, 93 (2013).CrossRefGoogle Scholar
  14. 14.
    N. N. Novikova, E. A. Vinogradov, V. A. Yakovlev, et al., Surf. Coat. Technol. 227, 58 (2013).CrossRefGoogle Scholar
  15. 15.
    N. N. Novikova, E. A. Vinogradov, V. A. Yakovlev, et al., Phys. Status Solidi C 12 (4–5), 439 (2015).CrossRefGoogle Scholar
  16. 16.
    V. A. Yakovlev, N. N. Novikova, E. A. Vinogradov, et al., J. Nanopart. Res. 13 (11), 5841 (2011).CrossRefGoogle Scholar
  17. 17.
    N. Grandjean, J. Massies, and M. Leroux, Appl. Phys. Lett. 69, 2071 (1996).CrossRefGoogle Scholar
  18. 18.
    K. Masu, Y. Nakamura, T. Yamazaki, et al., Jpn. J. Appl. Phys. 34 (6B), L760 (1995).CrossRefGoogle Scholar
  19. 19.
    A. S. Barker, Phys. Rev. 132, 1474 (1963).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute for SpectroscopyRussian Academy of SciencesTroitsk, MoscowRussia

Personalised recommendations