Advertisement

Monte Carlo Method in Scanning Electron Microscopy. 2. Problems and Solutions

  • Yu. A. Novikov
Article

Abstract

An analysis of the applicability of the Monte Carlo method for modeling images obtained in a scanning electron microscope is presented. It is shown that, in the Monte Carlo method, it is impossible to take into account all mechanisms of the interaction of electrons with matter that influence image formation. The amount of random numbers produced by modern random-number generators is insufficient for the modeling of electron scattering in matter. The time of image modeling on modern personal computers is too long: years of continuous work of a computer. There is no evidence for the correctness of the results given by the Monte Carlo method in image generation. These facts prove the impossibility of applying the Monte Carlo method to modeling electron scattering in solids, which is used for image formation in a scanning electron microscope.

Keywords

Monte Carlo method statistical modeling random numbers scanning electron microscope virtual scanning electron microscope modeling of electron trajectories image formation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis, (Springer, New York, Berlin, Heidelberg, 1998).CrossRefGoogle Scholar
  2. 2.
    Scanning Microscopy for Nanotechnology. Techniques and Applications, Ed. by W. Zhou and Z. L. Wang (Springer, New York, 2007).Google Scholar
  3. 3.
    International Technology Roadmap for Semiconductors. 2013 Edition. Metrology (2013).Google Scholar
  4. 4.
    Yu. A. Novikov and A. V. Rakov, Measurement Techniques 42 (1), 20 (1999).CrossRefGoogle Scholar
  5. 5.
    M. T. Postek and A. E. Vladar, in Handbook of Silicon Semiconductor Metrology, Ed. by A. C. Diebold (Marcel Dekker, New York, Basel, 2001), p.295.Google Scholar
  6. 6.
    V. P. Gavrilenko, V. A. Kalnov, Yu. A. Novikov, A. A. Orlikovsky, A. V. Rakov, P. A. Todua, K. A. Valiev, and E. N. Zhikharev, Proc. SPIE 7272, 727227-1 (2009). doi 10.1117/12.814062CrossRefGoogle Scholar
  7. 7.
    Yu. A. Novikov, Russ. Microelectron. 46 (1), 55 (2017). doi 10.1134/S1063739717010073CrossRefGoogle Scholar
  8. 8.
    Y. G. Li, S. F. Mao, and Z. J. Ding, in Applications of Monte Carlo Method in Science and Engineering, Ed. by S. Mordechai (InTech, 2011), p.232.Google Scholar
  9. 9.
    V. Stary, in Applications of Monte Carlo Method in Science and Engineering, Ed. by S. Mordechai (InTech, 2011), p.195.Google Scholar
  10. 10.
    P. Zhang, H. Y. Wang, Y. G. Li, S. F. Mao, and Z. J. Ding, Scanning 34, 145 (2012). doi 10.1002/sca.20288CrossRefGoogle Scholar
  11. 11.
    Y. G. Li, P. Zhang, and Z. J. Ding, Scanning 35, 127 (2013). doi 10.1002/sca.21042CrossRefGoogle Scholar
  12. 12.
    Z. Ruan, M. Zhang, R. G. Zeng, Y. Ming, B. Da, S. F. Mao, and Z. J. Ding, Surf. Interface Anal. 46, 1296 (2014). doi 10.1002/sia.5565CrossRefGoogle Scholar
  13. 13.
    J. S. Villarrubia, A. E. Vladar, B. Ming, R. J. Kline, D. F. Sunday, J. S. Chawla, and S. List, Ultramicroscopy 154, 15 (2015).CrossRefGoogle Scholar
  14. 14.
    Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (6), 1244 (2014). doi 10.1134/S1027451014060123CrossRefGoogle Scholar
  15. 15.
    Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (3), 604 (2015). doi 10.1134/S1027451015030325CrossRefGoogle Scholar
  16. 16.
    Yu. A. Novikov, Russ. Microelectron. 43 (4), 258 (2014). doi 10.1134/S1063739714040076CrossRefGoogle Scholar
  17. 17.
    Yu. A. Novikov, Russ. Microelectron. 43 (6), 427 (2014). doi 10.1134/S1063739714060079CrossRefGoogle Scholar
  18. 18.
    Yu. A. Novikov, Russ. Microelectron. 44 (4), 269 (2015). doi 10.1134/S1063739715030075CrossRefGoogle Scholar
  19. 19.
    Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 11 (4), 853 (2017). doi 10.1134/S1027451017040243CrossRefGoogle Scholar
  20. 20.
    Applications of Monte Carlo Method in Science and Engineering, Ed. by S. Mordechai (InTech, 2011).Google Scholar
  21. 21.
    G. R. Brandes, K. F. Canter, T. N. Horsky, P. H. Lippel, and A. P. Mills, Rev. Sci. Instrum. 59 (2), 228 (1988).CrossRefGoogle Scholar
  22. 22.
    K. A. Valiev, The Physics of Submicron Lithography (Plenum Press, New York, 1992).CrossRefGoogle Scholar
  23. 23.
    V. I. Goldanskii, Yu. A. Novikov, A. V. Rakov, and V. P. Shantarovich, Struct. Chem. 2, (135) 343 (1991).Google Scholar
  24. 24.
    M. Prutton, Introduction to Surface Physics (Clarendon Press, 1994).Google Scholar
  25. 25.
    Yu. A. Novikov and A. V. Rakov, Surface Investigation, 15 (8), 1177 (2000).Google Scholar
  26. 26.
    Yu. A. Novikov and A. V. Rakov, Mechanisms of Secondary Electron Emission from a Relief Surface of Solids (Nauka, Moscow, 1998), p. 3. (Proc. IOFAN, Vol. 55). [in Russian]).Google Scholar
  27. 27.
    K. Siegbahn, C. Nordling, A. Fahlman, R. Nordberg, K. Hamrin, J. Hedman, G. Johansson, T. Bergmark, S.-E. Karlsson, I. Lindgren, and B. Lindberg, ESCA: Atomic, Molecular and Solid State Structure Studied by Means of Electron Spectroscopy (Almqvist & Wiksells, Uppsala, 1967).Google Scholar
  28. 28.
    Yu. A. Novikov, Physics, Chemistry, and Mechanics of Surfaces 11 (10) 1077 (1995).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.A.M. Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  2. 2.National Research Nuclear University MEPhIMoscowRussia

Personalised recommendations