Advertisement

Neutron Time-of-Flight Stress Diffractometry

  • G. D. Bokuchava
  • I. V. Papushkin
Article

Abstract

Over recent decades, the diffraction of thermal neutrons has become a powerful tool for solving various actual problems of materials science. To carry out scientific investigations on this theme, a neutron time-of-flight Fourier diffractometer FSD was developed and has been successfully operated for many years at the IBR-2 pulsed reactor in the Frank Laboratory of Neutron Physics, Joint Institute for Nuclear Research, Dubna. To ensure high resolution of the instrument, a special correlation technique is used, i.e., a fast Fourier chopper for modulation of the primary-neutron-beam intensity and the reverse time-of-flight method for data acquisition. The current state of the FSD diffractometer and its capabilities are described and examples of performed experiments are given.

Keywords

neutron diffraction time-of-flight method residual stress microstrain 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. D. Bokuchava, V. L. Aksenov, A. M. Balagurov, et al., Appl. Phys. A: Mater. Sci. Process. 74, 86 (2002). http://dx.doi.org/10.1007/s003390201750.CrossRefGoogle Scholar
  2. 2.
    A. J. Allen, M. T. Hutchings, and C. G. Windsor, Adv. Phys. 34 (4), 445 (1985). http://dx.doi.org/10.1080/00018738500101791.CrossRefGoogle Scholar
  3. 3.
    G. D. Bokuchava, I. V. Papushkin, V. I. Bobrovskii, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (1), 44 (2015). http://dx.doi.org/10.1134/S1027451015010048.CrossRefGoogle Scholar
  4. 4.
    A. M. Balagurov, I. A. Bobrikov, G. D. Bokuchava, et al., Mater. Charact. 109, 173 (2015). http://dx.doi.org/10.1016/j.matchar.2015.09.025.CrossRefGoogle Scholar
  5. 5.
    P. Hiismäki, H. Pöyry, and A. Tiitta, J. Appl. Crystallogr. 21, 349 (1988). http://dx.doi.org/10.1107/S0021889888003024.CrossRefGoogle Scholar
  6. 6.
    G. D. Bokuchava, I. V. Papushkin, A. V. Tamonov, et al., Rom. J. Phys. 61 (3–4), 491 (2016). http://www.nipne.ro/rjp/2016_61_3-4/0491_0505.pdf.Google Scholar
  7. 7.
    G. Bokuchava, I. Papushkin, and P. Petrov, C. R. Acad. Bulg. Sci. 67 (6), 763 (2014). http://www.proceedings. bas.bg/content/2014_6_cntent.html.Google Scholar
  8. 8.
    G. D. Bokuchava, P. Petrov, and I. V. Papushkin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10 (6), 1143 (2016). https://doi.org/10.1134/S1027451016050463.CrossRefGoogle Scholar
  9. 9.
    P. Petrov, G. Bokuchava, I. Papushkin, et al., Proc. SPIE 10226, 102260D (2017). http://dx.doi.org/10.1117/12.2261802.Google Scholar
  10. 10.
    G. D. Bokuchava, Rom. J. Phys. 61 (5–6), 903 (2016). www.nipne.ro/rjp/2016_61_5-6/0903_0925.pdf.Google Scholar
  11. 11.
    G. D. Bokuchava, J. Schreiber, N. Shamsutdinov, et al., Phys. B (Amsterdam, Neth.) 276–278, 884 (2000). http://dx.doi.org/10.1016/S0921-4526(99)01276-4.CrossRefGoogle Scholar
  12. 12.
    G. D. Bokuchava, J. Schreiber, N. R. Shamsutdinov, et al., Mater. Sci. Forum 308–311, 1018 (1999). http://dx.doi.org/10.4028/www.scientific.net/MSF.308-311.1018.CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Joint Institute for Nuclear ResearchDubnaRussia

Personalised recommendations