Electron-Stimulated Hydrogen Desorption from Nickel and Palladium

  • Yu. I. Tyurin
  • I. P. Chernov
  • V. M. Silkin
  • V. S. Sypchenko
  • A. M. Hashhash
  • N. N. Nikitenkov
  • N. D. Tolmacheva


New experimental data are presented on the radiation-stimulated diffusion of hydrogen in metals, in particular, nickel and palladium, under the action of a 30-keV accelerated electron beam. Hydrogen desorption rates from nickel and palladium are determined for thermal and electron beam heating; a substantial shift of the thermal gas-desorption peaks to the low-temperature range is detected upon radiationinduced heating. The presence of an internal hydrogen atmosphere is shown to create favorable conditions for the vibrational-translational exchange (VT exchange), non-equilibrium redistribution, and desorption of hydrogen from a solid upon irradiation. Accelerated hydrogen migration stimulated by electrons with an energy below the defect-formation threshold is explained at a qualitative level. First-principles calculations of the electronic structure of the metal–hydrogen system reveal that plasmons are also an efficient mechanism for radiation-energy dissipation over the whole crystal.


hydrogen nickel palladium thermal- and radiation-stimulated gas desorption first-principles calculations plasmons 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. V. Gapontsev and V. V. Kodrat’ev, Usp. Fiz. Nauk 46 (10), 1077 (2003).CrossRefGoogle Scholar
  2. 2.
    Y. Fukai, The Metal-Hydrogen System (Springer, Berlin, Heidelberg, New York, 2005).Google Scholar
  3. 3.
    Yu. S. Nechaev, Usp. Fiz. Nauk 178 (7), 709 (2008).CrossRefGoogle Scholar
  4. 4.
    R. Pundt and R. Kirchheim, Annu. Rev. Mater. Res. 36, 55 (2006).CrossRefGoogle Scholar
  5. 5.
    Yu. I. Tyurin, Poverkhnost 9, 115 (1986).Google Scholar
  6. 6.
    Yu. Tyurin and I. Chernov, Int. J. Hydrogen Energy 27, 829 (2002).CrossRefGoogle Scholar
  7. 7.
    I. P. Chernov, A. S. Rusetsky, D. N. Krasnov, et al., J. Eng. Thermophys. 20 (4), 360 (2011).CrossRefGoogle Scholar
  8. 8.
    V. M. Silkin, I. P. Chernov, and Yu. M. Koroteev, Phys. Rev. B 80, 245114 (2009).CrossRefGoogle Scholar
  9. 9.
    N. N. Nikitenkov, A. M. Khashkhash, T. I. Sigfusson, et al., Acta Phys. Pol. 21 (1), 78 (2012).CrossRefGoogle Scholar
  10. 10.
    N. N. Nikitenkov, A. M. Hashhash, I. A. Shulepov, et al., Instrum. Exp. Tech. 52 (6), 865 (2009).CrossRefGoogle Scholar
  11. 11.
    D. P. Woodrouff and T. A. Delchar, Modern Techniques of Surface Science (Cambridge Univ. Press, Cambridge, 1994).CrossRefGoogle Scholar
  12. 12.
    Yu. I. Tyurin, N. N. Niktenkov, I. T. Sigfusson, et al., Vacuum 131, 73 (2016). Scholar
  13. 13.
    V. M. Silkin, I. P. Chernov, and P. M. Echenique, Phys. Rev. B 76, 245105 (2007).CrossRefGoogle Scholar
  14. 14.
    E. Runge and E. K. U. Gross, Phys. Rev. Lett. 52, 997 (1984).CrossRefGoogle Scholar
  15. 15.
    M. Petersilkia, U. J. Gossmann, and E. K. U. Gross, Phys. Rev. Lett. 76, 1212 (1996).CrossRefGoogle Scholar
  16. 16.
    D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).CrossRefGoogle Scholar
  17. 17.
    N. Troullier and J. L. Martin, Phys. Rev. B 43, 1993 (1991).CrossRefGoogle Scholar
  18. 18.
    V. M. Silkin, I. P. Chernov, Yu. M. Koroteev, and E. V. Chulkov, Phys. Rev. B 80, 245114 (2009).CrossRefGoogle Scholar
  19. 19.
    V. M. Silkin, V. U. Nazarov, I. P. Chernov, Y. Y. Sklyadneva, E. V. Chulkov, J. Phys.: Condens. Matter 27, 055501 (2015).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • Yu. I. Tyurin
    • 1
  • I. P. Chernov
    • 1
  • V. M. Silkin
    • 1
  • V. S. Sypchenko
    • 1
  • A. M. Hashhash
    • 2
  • N. N. Nikitenkov
    • 1
  • N. D. Tolmacheva
    • 1
  1. 1.National Research Tomsk Polytechnic UniversityTomskRussia
  2. 2.Institute of Atomic EnergyNational Research CenterCairoEgypt

Personalised recommendations