Heat Transfer and Thermocapillary Convection during the Laser Deposition of Metal Powders Implemented in Additive Technologies

  • A. V. Dubrov
  • F. Kh. Mirzade
  • V. D. Dubrov
  • V. Ya. Panchenko


Heat-transfer- and thermocapillary-convection macroprocesses observed during direct laser metal deposition (DLMD) with coaxial powder injection are examined. The study is performed using the 3D mathematical model incorporating self-consistent equations for free surface evolution, heat transfer, and hydrodynamics, which allow for powder-particle embedding into the thermocapillary convection zone under DLMD. The processes under consideration refer to the main ones underlying additive laser technologies, which determine the microstructural properties and quality of synthesized parts. The convection-diffusion equations are numerically solved using the final volume method. Calculations are carried out for the thermocapillary convection of H13 steel powder. The influence of laser-radiation characteristics (power, scanning rate, intensity distribution in the beam) and the powder-mass flow velocity on temperature fields, the structure of convective melt flow (including a maximum melt velocity), and the geometric characteristics (height and width) of the object formed is investigated.


direct laser deposition of metals H13 tool steel powder 3D numerical simulation heat transfer thermocapillary flows additive technologies 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. Ya. Panchenko, V. S. Golubev, V. V. Vasil’tsov, et al., Laser Technologies for Materials Processing: Modern Problems on Fundamental Researches and Applied Developments, Ed. by V. Ya. Panchenko (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  2. 2.
    I. V. Shishkovskii, Laser Synthesis of Functional Mesostructures and Volumetric Units (Fizmatlit, Moscow, 2009) [in Russian].Google Scholar
  3. 3.
    G. G. Gladush and I. Smurov, Physics of Laser Materials Processing: Theory and Experiment (Springer, Berlin, 2011).CrossRefGoogle Scholar
  4. 4.
    L. Han, F. W. Liou, and K. M. Phatak, Metall. Trans. B 35, 1139 (2004).CrossRefGoogle Scholar
  5. 5.
    A. Frenk, M. Vandyoussefi, J.-D. Wagniere, et al., Metall. Mater. Trans. B 28, 501 (1997).CrossRefGoogle Scholar
  6. 6.
    V. G. Niz’ev, F. Kh. Mirzade, V. Ya. Panchenko, et al., Math. Models Comput. Simul. 4 (2), 163 (2012).CrossRefGoogle Scholar
  7. 7.
    B. Ollier, N. Pirch, E. W. Krentz, and H. Schluter, in Proc. European Conference on Laser Treatment of Materials ECLAT’92, Ed. B. L. Mordike (Gottigen, 1992), p. 687Google Scholar
  8. 8.
    S.-L. Wang, R. F. Sekerka, A. A. Wheeler, et al., Phys. D (Amsterdam, Neth.) 69, 189 (1993).CrossRefGoogle Scholar
  9. 9.
    J. A. Warren and W. J. Boettinger, Acta Metall. Mater. 43, 689 (1995).CrossRefGoogle Scholar
  10. 10.
    Z. Bi and R. F. Sekerka, Phys. A (Amsterdam, Neth.) 261, 95 (1998).CrossRefGoogle Scholar
  11. 11.
    O. Penrose and P. C. Fife, Phys. D (Amsterdam, Neth.) 3, 44 (1990).CrossRefGoogle Scholar
  12. 12.
    F. Kh. Mirzade, Zhurn. Prikl. Spektr. 83 (6–16), 559 (2016) [in Russian].Google Scholar
  13. 13.
    S. Osher and J. A. Sethian, J. Comput. Phys. 79, 12 (1998).CrossRefGoogle Scholar
  14. 14.
    E. Olsson and G. Kreiss, J. Comput. Phys. 210, 225 (2005).CrossRefGoogle Scholar
  15. 15.
    C. Hirt and B. Nichols, J. Comput. Phys. 39, 201 (1981).CrossRefGoogle Scholar
  16. 16.
    J. Choi, L. Han, and Y. Hua, J. Heat Transfer 127 (9), 978 (2005).CrossRefGoogle Scholar
  17. 17.
    Z. Fan, J. K. Stroble, J. Ruan, et al., in Proc. ASME 2007 Int. Manufacturing Science and Engineering Conference (Atlanta, GA, 2007), p.37.CrossRefGoogle Scholar
  18. 18.
    D. V. Bedenko, O. B. Kovalev, I. Smurov, and A. V. Zaitsev, Int. J. Heat Mass Transfer 95, 902 (2016).CrossRefGoogle Scholar
  19. 19.
    F. Kh. Mirzade, Proc. SPIE 10330, 10330 (2017).Google Scholar
  20. 20.
    W. D. Bennon and F. P. Incropera, Int. J. Heat Mass Transfer 30, 2161 (1987).CrossRefGoogle Scholar
  21. 21.
    A. Albadawi, D. B. Donoghue, A. J. Robinson, et al., Int. J. Multiphase Flow 53, 11 (2013).CrossRefGoogle Scholar
  22. 22.
    K. Yokoi, J. Comput. Phys. 278, 221 (2014).CrossRefGoogle Scholar
  23. 23.
    V. R. Voller and C. R. Swaminathan, Numer. Heat Transfer, Part B 19, 175 (1991).CrossRefGoogle Scholar
  24. 24.
    H. Qi, J. Mazumder, and H. Ki, J. Appl. Phys. 100 (2), 024903 (2006).CrossRefGoogle Scholar
  25. 25.
    S. Morville, M. Carin, P. Peyre, et al., J. Laser Appl. 24 (3), 032008 (2012).CrossRefGoogle Scholar
  26. 26.
    H. O. Zhang, F. R. Kong, G. L. Wang, and L. F. Zeng, J. Appl. Phys. 100 (12), 123522 (2006).CrossRefGoogle Scholar
  27. 27.
    J. Mazumder, A. Schifferer, and J. Choi, Mater. Res. Innovations 3 (3), 118 (1999).CrossRefGoogle Scholar
  28. 28.
    J. T. Hofman, B. Pathiraj, J. Van Dijk, et al., J. Mater. Process. Technol. 212 (11), 2455 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • A. V. Dubrov
    • 1
  • F. Kh. Mirzade
    • 1
  • V. D. Dubrov
    • 1
  • V. Ya. Panchenko
    • 1
  1. 1.Institute of Laser and Information Technologies, Branch of the Federal Scientific Research Centre “Crystallography and Photonics”Russian Academy of SciencesShatura, Moscow oblastRussia

Personalised recommendations