Structural Parameters and Thermodynamics of the Formation of Molecular Water Clusters

  • K. V. Berezin
  • O. V. Kozlov
  • M. L. Chernavina
  • A. M. Lihter
  • V. V. Smirnov
  • I. V. Mihajlov
  • O. N. Grechuhina


The formation of molecular water clusters is simulated using the theoretical density functional theory/ B3LYP/6-311+G(d,p) method. The spatial configurations of 29 clusters with 2 to 28 water molecules are calculated. The dipole moments, the complete complex-formation enthalpy, and the enthalpy of the successive joining of water molecules are determined with the basis-set superposition error taken into account. The features of the geometric structure and the hydrogen-bond strength of water clusters are analyzed on the basis of the obtained theoretical data. The complex-formation enthalpy is revealed to depend periodically on the number of water molecules in a cluster. It is found that clusters with molecules whose number is a multiple of four are energetically most advantageous. When a molecular cluster is built starting with 17 molecules, the cluster structure is changed, resulting in that one end of the complex rolls up into a prismatic configuration.


water clusters complex-formation enthalpy structure hydrogen-bond strength DFT/B3LYP method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Feller, J. Chem. Phys. 96, 6104 (1992).CrossRefGoogle Scholar
  2. 2.
    N. Pugliano, J. D. Cruzan, J. G. Loeser, and R. J. Saykally, J. Chem. Phys. 98, 6600 (1993).CrossRefGoogle Scholar
  3. 3.
    R. N. Pribble and T. S. Zwier, Science 265, 75 (1994).CrossRefGoogle Scholar
  4. 4.
    C. Millot and A. J. Stone, Mol. Phys. 77, 439 (1992).CrossRefGoogle Scholar
  5. 5.
    S. S. Xantheas and T. H. Dunning, Jr., J. Chem. Phys. 99, 8774 (1993).CrossRefGoogle Scholar
  6. 6.
    K. Laasonen, M. Parinello, R. Car, et al., Chem. Phys. Lett. 207, 208 (1993).CrossRefGoogle Scholar
  7. 7.
    R. M. Bentwood, A. J. Barnes, and W. A. Orville-Thomas, J. Mol. Spectrosc. 84, 391 (1980).CrossRefGoogle Scholar
  8. 8.
    J. E. Del Bene and J. A. Pople, J. Chem. Phys. 52, 4858 (1970).CrossRefGoogle Scholar
  9. 9.
    T. R. Dyke and J. S. Muenter, J. Chem. Phys. 57, 5011 (1972).CrossRefGoogle Scholar
  10. 10.
    N. Pugliano and R. Saykally, Science 257, 1937 (1992).CrossRefGoogle Scholar
  11. 11.
    M. Schütz, T. Bürgi, S. Leutwyler, and H. B. Bürgi, J. Chem. Phys. 99, 5228 (1993).CrossRefGoogle Scholar
  12. 12.
    S. S. Xantheas and T. H. Dunning, Jr., J. Chem. Phys. 98, 8037 (1993).CrossRefGoogle Scholar
  13. 13.
    J. E. Fowler and H. F. Schaefer, J. Am. Chem. Soc. 117, 446 (1995).CrossRefGoogle Scholar
  14. 14.
    W. Klopper, M. Schütz, H. P. Lüthi, and S. Leutwyler, J. Chem. Phys. 103, 1085 (1995).CrossRefGoogle Scholar
  15. 15.
    M. P. Hodges, A. J. Stone, and S. S. Xantheas, J. Phys. Chem. 101, 9163 (1997).CrossRefGoogle Scholar
  16. 16.
    M. Masella and J.-P. Flament, J. Chem. Phys. 110, 7245 (1999).CrossRefGoogle Scholar
  17. 17.
    K. S. Kim, M. Dupuis, G. C. Lie, and E. Clementi, Chem. Phys. Lett. 131, 451 (1986).CrossRefGoogle Scholar
  18. 18.
    K. Liu, J. D. Cruzan, and R. J. Saykally, Science 271, 929 (1996).CrossRefGoogle Scholar
  19. 19.
    K. Liu, M. G. Brown, J. D. Cruzan, and R. J. Saykally, J. Phys. Chem. A 101, 9011 (1997).CrossRefGoogle Scholar
  20. 20.
    J. D. Cruzan, M. R. Viant, M. G. Brown, et al., Chem. Phys. Lett. 292, 667 (1998).CrossRefGoogle Scholar
  21. 21.
    R. Knochenmuss and S. Leutwyler, J. Chem. Phys. 96, 5233 (1992).CrossRefGoogle Scholar
  22. 22.
    L. A. Burke, J. O. Jensen, J. L. Jensen, and P. N. Krishanan, Chem. Phys. Lett. 206, 293 (1993).CrossRefGoogle Scholar
  23. 23.
    P. N. Krishnan, J. O. Jensen, and L. A. Burke, Chem. Phys. Lett. 217, 311 (1994).CrossRefGoogle Scholar
  24. 24.
    C. J. Tsai and K. D. Jordan, Chem. Phys. Lett. 213, 181 (1993).CrossRefGoogle Scholar
  25. 25.
    K. S. Kim, K. D. Jordan, and T. S. Zwier, J. Am. Chem. Soc. 116, 11568 (1994).CrossRefGoogle Scholar
  26. 26.
    B. J. Mhin, J. Kim, S. Lee, et al., J. Chem. Phys. 100, 4484 (1994).CrossRefGoogle Scholar
  27. 27.
    C. Lee, H. Chen, and G. Fitzgerald, J. Chem. Phys. 101, 4472 (1994).CrossRefGoogle Scholar
  28. 28.
    S. Maheshwary, N. Patel, and N. Sathyamurthy, J. Phys. Chem. A 105, 10525 (2001).CrossRefGoogle Scholar
  29. 29.
    C. Lee, R. Yang, and G. Parr, Phys. Rev. B 37, 785 (1988).CrossRefGoogle Scholar
  30. 30.
    A. D. Becke, J. Chem. Phys. 98, 5648 (1993).CrossRefGoogle Scholar
  31. 31.
    R. Ditchfield, W. J. Hehre, and J. A. Pople, J. Chem. Phys. 54 (2), 724 (1971).CrossRefGoogle Scholar
  32. 32.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 09, Revision A.1 (Gaussian Inc., Wallingford, CT, 2009).Google Scholar
  33. 33.
    K. V. Berezin, S. N. Chernyaev, N. A. Kirnosov, and V. I. Berezin, in Problems on Optical Physics and Biophotonics (Novyi Veter, Saratov, 2008), p. 176 [in Russian].Google Scholar
  34. 34.
    O. A. Loboda and V. V. Goncharuk, Khim. Tekhnol. Vody 31 (2), 173 (2009).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • K. V. Berezin
    • 1
  • O. V. Kozlov
    • 1
  • M. L. Chernavina
    • 1
  • A. M. Lihter
    • 2
  • V. V. Smirnov
    • 2
  • I. V. Mihajlov
    • 2
  • O. N. Grechuhina
    • 3
  1. 1.Chernyshevsky Saratov State UniversitySaratovRussia
  2. 2.Astrakhan State UniversityAstrakhanRussia
  3. 3.Caspian Institute of Maritime and River TransportAstrakhanRussia

Personalised recommendations