On the Mutual Excitation of Embedded Circular Chains of Small Plasmonic Particles

Article
  • 2 Downloads

Abstract

To solve the problems of the repeated scattering of electromagnetic waves at ensembles of dielectric particles taking into account their conductivity, the interaction between collective optical modes of 2D embedded chains of small spherical plasmonic particles, which are characterized by electric dipole coupling, is analytically described on the basis of the quasi-separable T-scattering operator approach. It is assumed that the polarization vector of the electric field of an incident wave is oriented perpendicular to the plane of particle chains. The mutual influence of currents is demonstrated using a regular triangle whose vertices and center of symmetry contain particles and two embedded square chains with eight particles located at their vertices.

Keywords

chain of nanoparticles plasmon resonance near-zone field Bloch mode dipole interaction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Y. Zhao, P. Larimer, R. T. Pressler, et al., Angew. Chem., Int. Ed. 48, 2407 (2009).CrossRefGoogle Scholar
  2. 2.
    L. L. Zhao, L. L. Kelly, and G. C. Schatz, J. Phys. Chem. B 107, 7343 (2003).CrossRefGoogle Scholar
  3. 3.
    Sh. Mukherjee, F. Libisch, N. Large, et al., Nano Lett. 13, 240 (2013).CrossRefGoogle Scholar
  4. 4.
    Z. B. Wang, B. S. Luk’yanchuk, W. Guo, et al., J. Chem. Phys. 128, 094705 (2008).CrossRefGoogle Scholar
  5. 5.
    Y. Xu, Y. Li, R. K. Lee, and A. Yariv, Phys. Rev. E 62, 7389 (2000).CrossRefGoogle Scholar
  6. 6.
    A. L. Burin, Phys. Rev. E 73, 066614 (2006).CrossRefGoogle Scholar
  7. 7.
    B. N. Khlebtsov, V. A. Khanadeyev, J. Ye, et al., Phys. Rev. B 77, 035440 (2008).CrossRefGoogle Scholar
  8. 8.
    V. P. Tishkovets, J. Quant. Spectrosc. Radiat. Transfer 109, 2665 (2008).CrossRefGoogle Scholar
  9. 9.
    M. Y. Barabanenkov and Y. N. Barabanenkov, in Proc. 15th Int. Conferece on Nanotechnology (IEEE-NANO) (Rome, 2015), p. 393. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7389009&isnumber= 7388616.Google Scholar
  10. 10.
    I. Lisenkov, D. Kalyabin, and S. A. Nikitov, Appl. Phys. Lett. 103, 2002402 (2013).CrossRefGoogle Scholar
  11. 11.
    Yu. N. Barabanenkov and M. Yu. Barabanenkov, Zh. Radioelektron., No. 4, 1 (2013).Google Scholar
  12. 12.
    A. Yariv, Optical Waves in Crystals. Propagation and Control of Laser Radiation (John Wiley and Sons, New York, 1984).Google Scholar
  13. 13.
    M. G. Silveirinha, Phys. Rev. B 76, 245117 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  1. 1.Institute of Microelectronics Technology and High Purity MaterialsRussian Academy of SciencesChernogolovka, Moscow oblastRussia
  2. 2.Kotel’nikov Institute of Radio Engineering and ElectronicsRussian Academy of SciencesMoscowRussia

Personalised recommendations