Advertisement

On the Precision Preparation of Samples for Atom Probe Tomography Using a Focused Ion Beam in a SEM

  • V. V. Khoroshilov
  • O. A. Korchuganova
  • A. A. Lukyanchuk
  • O. A. Raznitsyn
  • A. A. Aleev
  • S. V. Rogozhkin
Article
  • 24 Downloads

Abstract

Atom probe tomography is a modern and dynamically developing method of material investigation. It allows studies of the structure of matter at the atomic scale. The physical fundamentals of this method require a specific size, shape and conductivity type of the sample. To expand the analytical capabilities of atom probe tomography, a technique for preparing samples using a focused ion beam in a scanning electron microscope is studied and implemented in this work. The basic principles of this approach are demonstrated; its advantages, disadvantages and important practical aspects are described. To protect a fabricated sample from the influence of environment upon its transport to an atom probe tomograph, it is suggested a platinum coating be used. The atom-probe-tomography analysis of samples prepared with a focused ion beam is carried out. The effects of using such a sample preparation technique are studied.

Keywords

Atom probe tomography (АРТ) scanning electron microscope (SEM) focused ion beam FIB sample preparation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. K. Miller, Atom Probe Tomography: Analysis at the Atomic Level (Kluwer Academic/Plenum Publ., New York, 2000).CrossRefGoogle Scholar
  2. 2.
    J. Cairney, et al., Microsc. Microanal. 13 (2), 1634 (2007).Google Scholar
  3. 3.
    M. K. Miller, Microsc. Microanal. 11 (2), 808 (2005).Google Scholar
  4. 4.
    W. R. McKenzie, E. A. Marquis, and P. R. Munroe, in Microscopy: Science, Technology, Applications and Education (Formatex Research Center, Badajoz, 2010), p. 1800.Google Scholar
  5. 5.
    E. W. Z. Muller, Physik 131, 136 (1951).CrossRefGoogle Scholar
  6. 6.
    G. Kellogg and T. Tsong, J. Appl. Phys. 51, 1184 (1980).CrossRefGoogle Scholar
  7. 7.
    A. L. Suvorov, S. V. Rogozhkin, A. G. Zaluzhnyi, et al., Materialoved. Nov. Mater., No. 1 (66), 3 (2006).Google Scholar
  8. 8.
    S. V. Rogozhkin, V. S. Ageev, A. A. Aleev, et al., Phys. Met. Metallogr. 108 (6), 579 (2009).CrossRefGoogle Scholar
  9. 9.
    A. A. Aleev, N. A. Iskandarov, M. Klimenkov, et al., J. Nucl. Mater. 409, 65 (2011).CrossRefGoogle Scholar
  10. 10.
    S. V. Rogozhkin, A. A. Aleev, A. G. Zaluzhnyi, et al., J. Nucl. Mater. 409, 94 (2011).CrossRefGoogle Scholar
  11. 11.
    S. V. Rogozhkin, N. N. Orlov, A. A. Aleev, et al., Phys. Met. Metallogr. 116 (1), 72 (2015).CrossRefGoogle Scholar
  12. 12.
    D. J. Larson and T. J. Prosa, in Local Electrode Atom Probe Tomography (Springer Science + Business Media, New York, 2013), p.10.CrossRefGoogle Scholar
  13. 13.
    T. F. Kelly and A. Vella, Curr. Opin. Solid State Mater. Sci. 18 (2), 81 (2013).CrossRefGoogle Scholar
  14. 14.
    D. J. Larson, T. J. Prosa, R. M. Ulfig, B. P. Geiser, and Th. F. Kelly, in Local Electrode Atom Probe Tomography (Springer Science + Business Media, New York, 2013), p.318.CrossRefGoogle Scholar
  15. 15.
    P. Bas, A. Bostel, B. Deconihout, and D. Blavette, Appl. Surf. Sci. 87–88, 298 (1995).CrossRefGoogle Scholar
  16. 16.
    S. V. Rogozhkin, A. A. Aleev, A. A. Lukyanchuk, et al., Instrum. Exp. Tech. 60 (3), 428 (2017).CrossRefGoogle Scholar
  17. 17.
    S. V. Rogozhkin, A. A. Aleev, A. A. Lukyanchuk, et al., in Proc. 5th Int. Youth Scientific School-Conference “Modern Problems on Physics and Technologies” (National Research Nuclear Univ. “Moscow Engineering Physics Institute” Moscow, 2016), p.229.Google Scholar
  18. 18.
    E. P. Silaeva, N. S. Shcheblanov, T. E. Itina, et al., Appl. Phys. A: Mater. Sci. Process. 110, 703 (2013).CrossRefGoogle Scholar
  19. 19.
    C. Oberdorfer and G. Schmitz, Microsc. Microanal. 17, 15 (2011).CrossRefGoogle Scholar
  20. 20.
    L. M. Gordon and D. Joester, Nature 469, 194 (2011).CrossRefGoogle Scholar
  21. 21.
    J. B. Lewis, B. Isheim, C. Floss, and D. N. Seidman, Ultramicroscopy 159 (2), 248 (2015).CrossRefGoogle Scholar
  22. 22.
    N. A. Sanford, P. T. Blanchard, M. Brubaker, et al., Phys. Status Solidi 11 (3–4), 608 (2014).CrossRefGoogle Scholar
  23. 23.
    D. J. Larson, et al., Ultramicroscopy 79 (1–4), 287 (1999).CrossRefGoogle Scholar
  24. 24.
    P. P. Choi, T. Al-Kassab, Y. S. Kwon, J. S. Kim, and R. Kirchheim, Microsc. Microanal. 13, 347 (2007).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • V. V. Khoroshilov
    • 1
  • O. A. Korchuganova
    • 1
  • A. A. Lukyanchuk
    • 1
  • O. A. Raznitsyn
    • 1
  • A. A. Aleev
    • 1
  • S. V. Rogozhkin
    • 1
    • 2
  1. 1.Institute of Theoretical and Experimental Physics NRC “Kurchatov Institute”MoscowRussia
  2. 2.National Research Nuclear University Moscow Engineering Physics Institute (MEPhI)MoscowRussia

Personalised recommendations