Advertisement

Damage of an Ultrasonic-Waveguide Surface during Cavitation Accompanied by Sonoluminescence

  • D. A. Biryukov
  • G. E. Val’yano
  • D. N. Gerasimov
Article

Abstract

The surface of a titanium (VT1-0) waveguide, which exhibits the sonoluminescence effect, is analyzed. The effect of sonoluminescence on the waveguide induces the formation of a series of cavities on its surface. Temperatures at the waveguide surface have been estimated, which makes it possible to assess the processes occurring upon sonoluminescence. If the effect observed is a high-temperature phenomenon, traces of metal melting are expected to be found on the waveguide surface. Analysis of the titanium waveguide shows that the observed surface destruction is due to mechanical impact and the absence of visible melting traces is likely to indicate that high temperatures are not reached.

Keywords

sonoluminescence erosion cavitation microstructural analysis titanium destruction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. A. Neppiras and B. E. Noltingk, Proc. Phys. Soc. 63, 674 (1950).Google Scholar
  2. 2.
    K. S. Suslick, N. C. Eddingsaas, D. J. Flannigan, et al., Ultrason. Sonochem. 18, 842 (2011).CrossRefGoogle Scholar
  3. 3.
    V. A. Borisenok, Acoust. Phys. 61 (3), 308 (2015).CrossRefGoogle Scholar
  4. 4.
    M. A. Margulis, Usp. Fiz. Nauk 170 (3), 263 (2000).CrossRefGoogle Scholar
  5. 5.
    I. Metter, Usp. Fiz. Nauk 35 (1), 52 (1948).CrossRefGoogle Scholar
  6. 6.
    E. P. Georgievskaya, Cavitational Erosion of Marine Screw Propellers and Methods for its Preventing (Sudostroenie, Moscow, 1978) [in Russian].Google Scholar
  7. 7.
    Erosion, Ed. by C. M. Preece (Academic Press, New York, 1979).Google Scholar
  8. 8.
    A. G. Evans, A. W. Ruff, S. M. Wiederhorn, et al., Erosion (Academic Press, New York, 1979).Google Scholar
  9. 9.
    S. P. Kozyrev, Hydro-Abrasive Wear of Metals under Cavitation (Mashinostroenie, Moscow, 1971) [in Russian].Google Scholar
  10. 10.
    S. D. Shestakov, Tekh. Akust. 14, 1 (2010).Google Scholar
  11. 11.
    V. G. Marinin and V. I. Kovalenko, Vost.-Evr. Zh. Peredovykh Tekhnol. 6 (11), 4 (2015).Google Scholar
  12. 12.
    D. A. Biryukov and D. N. Gerasimov, Tepl. Protsessy Tekh. 9 (3), 113 (2017).Google Scholar
  13. 13.
    D. A. Biryukov and D. N. Gerasimov, in Triboluminescence: Theory, Synthesis and Application, Ed. by D. O. Olawale, O. O. I. Okoli, R. S. Fontenot, and W. A. Hollerman (Springer, New York, 2016), pp. 95–123.Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2018

Authors and Affiliations

  • D. A. Biryukov
    • 1
  • G. E. Val’yano
    • 1
  • D. N. Gerasimov
    • 2
  1. 1.Joint Institute for High TemperaturesRussian Academy of SciencesMoscowRussia
  2. 2.National Research University “Moscow Energy Institute”MoscowRussia

Personalised recommendations