Skip to main content
Log in

Features of changes in the surface structure of K-208 glass under electron—proton irradiation

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Changes in the surface structure of K-208 glass after single-time irradiation of its samples with 20-keV electrons and protons are studied using atomic-force microscopy. Irradiation is performed in a vacuum chamber under a pressure of 10–4 Pa; the densities of the electron (ϕ e ) and proton (ϕ р ) fluxes are varied in the range of 1010–2.5 × 1011 cm−2 s−1. Analysis of the samples irradiated in the case where the parameters ϕ e and ϕ р increased in a stepwise manner makes it possible to study the appearance, growth, and evolution of microscopic structures on their surfaces. The radiation-stimulated processes of defect annealing and the release and field diffusion of alkali metal ions are accompanied by crystallization of the irradiated glass layer, which gives grounds for the use of dislocation mechanisms for mass transfer in explaining the formation of microprotrusions on its surface. It is shown that the character of changes in the structure is determined by the values of the parameters ϕ e and ϕ р and the ratio between them. In particular, it is established that, in the case of electron— proton irradiation of the glass, electrostatic discharges begin to noticeably affect the formation of microprotrusions for ϕ е > 3ϕ р .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. O. Gedeon, J. Zemek, and K. Jurek, J. Non-Cryst. Solids 354 (12–13), 1169 (2008). doi 10.1016/j.jnoncrysol. 2006.12.125

    Article  Google Scholar 

  2. X. Meyza, D. Goeuriot, C. Guerret-Piécourt, D. Tréheux, and H.-J. Fitting, J. Appl. Phys. 94 (8), 5384 (2003). doi 10.1063/1.1613807

    Article  Google Scholar 

  3. O. Gedeon, K. Jurek, and I. Drbohlav, J. Non-Cryst. Solids 353 (18–21), 1946 (2007). doi 10.1016/j.jnoncrysol. 2007.01.058

    Article  Google Scholar 

  4. E. N. Evstaf’eva, E. I. Rau, and R. A. Sennov, Bull. Russ. Acad. Sci.: Phys. 72 (11), 1493 (2008).

    Article  Google Scholar 

  5. E. I. Rau, E. N. Evstaf’eva, and M. V. Andrianov, Phys. Solid State 50, 621 (2008).

    Article  Google Scholar 

  6. P. N. Grillot and W. J. Rosenberg, Appl. Opt. 28 (20), 4473 (1989). doi 10.1364/AO.28.004473

    Article  Google Scholar 

  7. P. R. Silverglate, E. F. Zalewski, and P. Petrone, Proc. SPIE 1761, 46 (1993). doi 10.1117/12.138944

    Article  Google Scholar 

  8. G. Naletto, A. Boscolo, J. Wyss, and A. Quaranta, Appl. Opt. 42 (19), 3970 (2003). doi 10.1364/AO.42.003970

    Article  Google Scholar 

  9. R. H. Khasanshin, L. S. Novikov, and S. B. Korovin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (1), 81 (2015). doi 10.1134/S1027451015010115

    Article  Google Scholar 

  10. R. H. Khasanshin and L. S. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (5), 894 (2015). doi 10.1134/S1027451015050080

    Article  Google Scholar 

  11. R. Kh. Khasanshin, L. S. Novikov, and S. B. Korovin, Fiz. Khim. Obrab. Mater., No. 5, 5 (2014).

    Google Scholar 

  12. D. C. Ferguson and S. C. Wimberly, in Proc. 51st AIAA Aerospace Sciences Meeting Including the New Horizons Forum and Aerospace Exposition (Grapevine, TX, 2013), AIAA 2013-0810. doi 10.2514/6.2013-81010.2514/ 6.2013-810

    Google Scholar 

  13. G. V. Berezhkova, Filamentary Crystals (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  14. V. M. Fokin, M. L. F. Nascimento, and E. D. Zanotto, J. Non-Cryst. Solids 351, 789 (2005). doi 10.1016/j.jnoncrysol.2005.02.005

    Article  Google Scholar 

  15. D. Bellucci, A. Sola, R. Salvatori, A. Anesi, L. Chiarini, and V. Cannillo, Mater. Sci. Eng., C 43, 573–586 (2014). doi 10.1016/j.msec.2014.07.037

    Article  Google Scholar 

  16. D. Bellucci, A. Sola, and V. Cannillo, J. Am. Ceram. Soc. 95 (4), 1313 (2012). doi 10.1111/j.1551-2916.2012.05100.x

    Article  Google Scholar 

  17. O. Gedeon, J. Zemek, and K. Jurek, J. Non-Cryst. Solids 354, 1169 (2008). doi 10.1016/j.jnoncrysol. 2006.12.125

    Article  Google Scholar 

  18. Chen Liang, Wang Tie-Shan, Zhang Gen-Fa, Yang Kun-Jie, Peng Hai-Bo, and Zhang Li-Min, Chin. Phys. B 2 (12), 126101 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. Khasanshin.

Additional information

Original Russian Text © R.H. Khasanshin, L.S. Novikov, S.B. Korovin, 2017, published in Poverkhnost’, 2017, No. 9, pp. 28–34.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khasanshin, R.H., Novikov, L.S. & Korovin, S.B. Features of changes in the surface structure of K-208 glass under electron—proton irradiation. J. Surf. Investig. 11, 917–923 (2017). https://doi.org/10.1134/S102745101705007X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745101705007X

Keywords

Navigation