X-ray absorption fine structure and X-ray photoelectron spectroscopy studies of nanocomposite systems based on ZnS:Cu deposited into porous anodic Al2O3 matrices

  • R. G. Valeev
  • A. L. Trigub
  • Ya. V. Zubavichus
  • F. Z. Gil’mutdinov
  • I. A. El’kin
Article
  • 47 Downloads

Abstract

The results obtained via extended X-ray absorption fine structure and X-ray photoelectron spectroscopy studies of nanocomposite systems based on ZnS:Cu (5 at %) deposited into porous anodic alumina (AA) matrices, a promising material for electroluminescent light sources, are presented. The given results are compared with those corresponding to ZnS:Cu films on a smooth SiO2 surface. To implement the deposition process, we have pioneered the use of s method based on the thermal sputtering of ZnS and Cu powders mixed in a specified mass ratio. For the first time, ZnS:Cu single-crystal nanostructures are demonstrated to be formed in AA matrix pores. In this case, their size is assigned by the pore diameter and they possess better composition stoichiometry and better local ordering of atoms in the immediate environment of zinc.

Keywords

anodic alumina matrix ZnS:Cu single-crystal nanostructures ZnS thermal deposition extended X-ray absorption fine structure X-ray photoelectron spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Goldberg and R. Nickerson, J. Appl. Phys. 34, 1601 (1963). doi 10.1063/1.1702641CrossRefGoogle Scholar
  2. 2.
    D. I. Kochubei, EXAFS Spectroscopy in Catalysis (Nauka, Novosibirsk, 1992) [in Russian].Google Scholar
  3. 3.
    Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy, Ed. by D. Briggs and M. Seah (John Wiley and Sons, Chichester, 1983).Google Scholar
  4. 4.
    S. Medling, C. France, B. Balaban, M. Kozina, Y. Jiang, F. Bridges, and S. A. Carter, J. Phys. D: Appl. Phys. 44, 205402 (2011). doi 10.1088/0022- 3727/44/20/205402CrossRefGoogle Scholar
  5. 5.
    M. Warkentin, F. Bridges, S. A. Carter, and M. Anderson, Phys. Rev. B 75, 075301 (2007). 10._1103/Phys Rev B.75. 075301CrossRefGoogle Scholar
  6. 6.
    I. K. Vereshchagin, B. A. Kovalev, L. A. Kosyachenko, and S. M. Kokin, Electroluminescent Light Sources (Energoatomizdat, Moscow, 1990) [in Russian].Google Scholar
  7. 7.
    Y. Yang, J. M. Huang, S. Y. Liu, and J. C. Shen, J. Mater. Chem. 7, 131 (1997). doi 10.1039/a603555hCrossRefGoogle Scholar
  8. 8.
    D. Botez and D. R. Scifres, Diode Laser Arrays (Cambridge Univ. Press, Cambridge, 2005).Google Scholar
  9. 9.
    R. G. Valeev, P. N. Krylov, and E. A. Romanov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech.1 (1), 35 (2007). doi 10.1134/S1027451007010065CrossRefGoogle Scholar
  10. 10.
    E. V. Shelekhov and T. A. Sviridova, Met. Sci. Heat Treat. 42, 309 (2000). doi 10.1007/BF02471306CrossRefGoogle Scholar
  11. 11.
    M. Newville, J. Synchrotron Radiat. 8, 322 (2001). doi 10.1107/S0909049500016964CrossRefGoogle Scholar
  12. 12.
    R. Valeev, E. Romanov, A. Beltukov, V. Mukhgalin, I. Roslyakov, and A. Eliseev, Phys. Status Solidi C 9, 1462 (2012). doi 10.1002/pssc.201100677CrossRefGoogle Scholar
  13. 13.
    W. Q. Peng, G. W. Cong, S. C. Qu, and Z. G. Wang, Opt. Mater. 29, 313 (2006).CrossRefGoogle Scholar
  14. 14.
    R. Valeev, A. Beltiukov, V. Mukhgalin, and R. Zakirova, Mater. Res. Express 3, 015902 (2016). doi 10.1088/2053-1591/3/1/015902CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • R. G. Valeev
    • 1
  • A. L. Trigub
    • 1
    • 2
  • Ya. V. Zubavichus
    • 2
  • F. Z. Gil’mutdinov
    • 1
  • I. A. El’kin
    • 1
  1. 1.Physical-Technical Institute, Ural BranchRussian Academy of SciencesIzhevskRussia
  2. 2.National Research Centre Kurchatov InstituteMoscowRussia

Personalised recommendations