On the interaction of self-assembled C60F18 polar molecules with the Ni(100) surface

  • A. M. Lebedev
  • L. P. Sukhanov
  • M. Brzhezinskaya
  • K. A. Menshikov
  • N. Yu. Svechnikov
  • R. G. Chumakov
  • V. G. Stankevich
Article
  • 18 Downloads

Abstract

The current work is dedicated to investigation of the interaction between self-assembled polar molecules of fullerene fluoride C60F18 with the chemically active surface Ni(100) under radiation and heat treatments. X-ray photoelectron spectroscopy is used in combination with quantum-chemical simulation. For the first time, the transformation of an as-deposited dielectric continuous 2D thin film to a 3D island-type assembly with molecular ordering within the islands is shown to take place. The degree of coverage of the Ni surface by C60F18 islands (0.6–0.7) and their height (~6 nm) are estimated. Quantum-chemical simulation shows that the chemisorption energy of the C60F18 molecule on the Ni surface equals ~6.6 eV and fluorine atoms are located at a distance of 1.9 Å above the Ni surface. The results of the investigation provide an opportunity to create nanoscale ordered structures with local changes in the work function.

Keywords

fullerene fluoride electric dipole moment molecular self-assembly X-ray photoelectron spectroscopy density functional theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Z. Vager and R. Naaman, Chem. Phys. 281 (2–3), 305 (2002).CrossRefGoogle Scholar
  2. 2.
    H. Fukagawa, H. Yamane, S. Kera, et al., Phys. Rev. B 73, 041302 (2006).CrossRefGoogle Scholar
  3. 3.
    P. C. Rusu and G. Brocks, Phys. Rev. B 74, 073414 (2006).CrossRefGoogle Scholar
  4. 4.
    P. C. Rusu and G. Brocks, J. Phys. Chem. B 110, 22628 (2006).CrossRefGoogle Scholar
  5. 5.
    D. Cornil, Y. Oliver, V. Geskin, et al., Adv. Funct. Mater. 17, 1143 (2007).CrossRefGoogle Scholar
  6. 6.
    A. Natan, L. Kronik, H. Haick, et al., Adv. Mater. 19, 4103 (2007).CrossRefGoogle Scholar
  7. 7.
    P. C. Rusu, PhD Thesis (Univ. Twente, Enschede, 2007).Google Scholar
  8. 8.
    P. C. Rusu, G. Giovannetti, and G. Brocks, J. Phys. Chem. C 111, 14448 (2007).CrossRefGoogle Scholar
  9. 9.
    N. Battaglini, V. Repain, P. Lang, et al., Langmuir 24 (5), 2042 (2008).CrossRefGoogle Scholar
  10. 10.
    F. Zheng, I. Barke, X. Liu, et al., Nanotechnology 19 (44), 445303 (2008).CrossRefGoogle Scholar
  11. 11.
    A. Kokalj, Phys. Rev. B 84, 045418 (2011).CrossRefGoogle Scholar
  12. 12.
    F. C. Bocquet, L. Giovanelli, P. Amsalem, et al., Phys. Rev. B 84, 241407 (2011).CrossRefGoogle Scholar
  13. 13.
    L. Giovanelli, F. C. Bocquet, P. Amsalem, et al., Phys. Rev. B 87, 035413 (2013).CrossRefGoogle Scholar
  14. 14.
    D. A. Egger and E. Zojer, J. Phys. Chem. Lett. 4, 3521 (2013).CrossRefGoogle Scholar
  15. 15.
    M. Zharnikov, J. Electron Spectrosc. Relat. Phenom. 178–179, 380 (2010).CrossRefGoogle Scholar
  16. 16.
    J. Wen and J. Ma, Langmuir 26 (8), 5595 (2010).CrossRefGoogle Scholar
  17. 17.
    X. Wang, S. Chen, J. Wen, et al., J. Phys. Chem. C 117 (3), 1308 (2013).CrossRefGoogle Scholar
  18. 18.
    W. Kohn and L. J. Sham, Phys. Rev. A 140, A1133 (1965).CrossRefGoogle Scholar
  19. 19.
    I. S. Neretin, K. A. Lyssenko, M. Yu. Antipin, et al., Angew. Chem., Int. Ed. 39 (18), 3273 (2000).CrossRefGoogle Scholar
  20. 20.
    I. S. Neretin, K. A. Lysenko, M. Yu. Antipin, et al., Izv. Akad. Nauk, Ser. Khim., No. 5, 675 (2002).Google Scholar
  21. 21.
    I. V. Goldt, O. V. Boltalina, L. N. Sidorov, et al., Solid State Sci. 4 (11–12), 1395 (2002).CrossRefGoogle Scholar
  22. 22.
    A. A. Popov, V. M. Senyavin, V. I. Korepanov, et al., Phys. Rev. B 79, 045413 (2009).CrossRefGoogle Scholar
  23. 23.
    K. Bairagi, A. Bellec, R. G. Chumakov, et al., Surf. Sci. 641, 248 (2015).CrossRefGoogle Scholar
  24. 24.
    A. M. Lebedev, L. P. Sukhanov, M. M. Brzhezinskaya, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6 (5), 833 (2012).CrossRefGoogle Scholar
  25. 25.
    A. M. Lebedev, K. A. Menshikov, N. Yu. Svechnikov, et al., Bull. Russ. Acad. Sci.: Phys. 77 (9), 1131 (2013).CrossRefGoogle Scholar
  26. 26.
    S. L. Molodtsov, S. I. Fedoseenko, D. V. Vyalikh, et al., Appl. Phys. A: Mater. Sci. Process. 94, 501 (2009).CrossRefGoogle Scholar
  27. 27.
    V. M. Mikoushkin, V. V. Shnitov, V. V. Bryzgalov, et al., Tech. Phys. Lett. 35 (3), 256 (2009).CrossRefGoogle Scholar
  28. 28.
    V. M. Mikoushkin, M. S. Galaktionov, S. Yu. Nikonov, et al., J. Electron Spectrosc. Relat. Phenom. 161 (1–3), 109 (2007).CrossRefGoogle Scholar
  29. 29.
    J. W. Evans, P. A. Thiel, M. C. Bartelt, et al., Surf. Sci. Rep. 61 (1–2), 1 (2006).CrossRefGoogle Scholar
  30. 30.
    L. Assaud, E. Monyoncho, K. Pitzschel, et al., Beilstein J. Nanotechnol. 5, 162 (2014).CrossRefGoogle Scholar
  31. 31.
    M. N. Tamashiro, H. Schiessel, et al., Phys. Rev. E 74, 021412 (2006).CrossRefGoogle Scholar
  32. 32.
    E. Schäffer, T. Thurn-Albrecht, T. P. Russell, et al., Europhys. Lett. 53 (4), 518 (2001).CrossRefGoogle Scholar
  33. 33.
    R. Mukherjee, A. Sharma, U. Steine, et al., Surface Instability and Pattern Formation in Thin Polymer Films, Ed. by A. del Campo and E. Arzt (Wiley-VCH, Weinheim, 2011), p. 217.Google Scholar
  34. 34.
    S.-J. Oh, J. W. Allen, I. Lindau, et al., Phys. Rev. B 26 (9), 4845 (1982).CrossRefGoogle Scholar
  35. 35.
    W. Eberhardt and E. W. Plummer, Phys. Rev. B 21 (8), 3245 (1980).CrossRefGoogle Scholar
  36. 36.
    A. M. Ferraria, J. D. Lopes da Silva, A. M. Botelho do Rego, Polymer 44 (23), 7241 (2003).Google Scholar
  37. 37.
    A.-C. Wade, S. Lizzit, and L. Petaccia, J. Chem. Phys. 132 (23), 234710 (2010).CrossRefGoogle Scholar
  38. 38.
    A. P. Grosvenor, M. C. Biesinger, R. St. C. Smart, et al., Surf. Sci. 600 (9), 1771 (2006).CrossRefGoogle Scholar
  39. 39.
    H. W. Nesbitt, D. Legrand, G. M. Bancroft, et al., Phys. Chem. Miner. 27 (5), 357 (2000).CrossRefGoogle Scholar
  40. 40.
    R. K. Y. Fu, Y. F. Mei, G. J. Wan, et al., Surf. Sci. 573 (3), 426 (2004).CrossRefGoogle Scholar
  41. 41.
    T. C. S. Chen and S. M. Mukhopadhyay, J. Appl. Phys. 78, 5422 (1995).CrossRefGoogle Scholar
  42. 42.
    A. Wiltner and Ch. Linsmeier, Phys. Status Solidi A 201 (5), 881 (2004).CrossRefGoogle Scholar
  43. 43.
    P. VijaiBharathy, Y.-Y. Chang, D. Nataraj, et al., Thin Solid Films 19 (5), 1623 (2010).CrossRefGoogle Scholar
  44. 44.
    T. Quast, R. Bellmann, B. Winter, et al., J. Appl. Phys. 83 (3), 1642 (1998).CrossRefGoogle Scholar
  45. 45.
    M. R. C. Hunt, S. Modesti, P. Rudolf, et al., Phys. Rev. B 51 (15), 10039 (1995).CrossRefGoogle Scholar
  46. 46.
    A. Kolmakov, V. Stankevitch, N. Svechnikov, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 405 (2–3), 412 (1998).CrossRefGoogle Scholar
  47. 47.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, et al., Gaussian 98, Revision A.3 (Gaussian, Pittsburgh, PA, 1998).Google Scholar
  48. 48.
    A. D. Becke, Phys. Rev. A 38, 3098 (1988).CrossRefGoogle Scholar
  49. 49.
    A. D. Becke, J. Chem. Phys. 98 (7), 5648 (1993).CrossRefGoogle Scholar
  50. 50.
    C. Lee, W. Yang, and R. G. Parr, Phys. Rev. B 37 (2), 785 (1988).CrossRefGoogle Scholar
  51. 51.
    H. A. Joly and L. Manceron, Chem. Phys. 226 (1–2), 61 (1998).CrossRefGoogle Scholar
  52. 52.
    B. Liang, M. Zhou, and L. Andrews, J. Phys. Chem. A 104 (17), 3905 (2000).CrossRefGoogle Scholar
  53. 53.
    E. Yamazaki, T. Okabayashi, and M. Tanimoto, J. Am. Chem. Soc. 126 (4), 1028 (2004).CrossRefGoogle Scholar
  54. 54.
    A. E. Stevens, C. S. Feigerle, and W. C. Linerberg, J. Am. Chem. Soc. 104 (19), 5026 (1982).CrossRefGoogle Scholar
  55. 55.
    L. S. Sunderlin, D. Wang, and R. S. Squires, J. Am. Chem. Soc. 114 (8), 2788 (1992).CrossRefGoogle Scholar
  56. 56.
    S. P. Walch and W. A. Goddard III, J. Am. Chem. Soc. 98 (25), 7908 (1976).CrossRefGoogle Scholar
  57. 57.
    A. B. Rives and R. F. Fenske, J. Chem. Phys. 75 (3), 1293 (1981).CrossRefGoogle Scholar
  58. 58.
    P. S. Bagus and B. O. Roos, J. Chem. Phys. 75 (12), 5961 (1981).CrossRefGoogle Scholar
  59. 59.
    C. M. Rohlfing and P. J. Hay, J. Chem. Phys. 83 (9), 4641 (1985).CrossRefGoogle Scholar
  60. 60.
    C. W. Bauschlicher, Jr., P. S. Bagus, C. J. Nelin, et al., J. Chem. Phys. 85 (1), 354 (1986).CrossRefGoogle Scholar
  61. 61.
    C. W. Bauschlicher, Jr., L. A. Barnes, and S. R. Langhoff, Chem. Phys. Lett. 151 (4–5), 391 (1988).CrossRefGoogle Scholar
  62. 62.
    M. R. A. Blomberg, P. E. M. Siegbahn, T. J. Lee, et al., J. Chem. Phys. 95 (8), 5898 (1991).CrossRefGoogle Scholar
  63. 63.
    R. Fournier, J. Chem. Phys. 98 (10), 8041 (1993).CrossRefGoogle Scholar
  64. 64.
    L. Horný, A. Paul, Y. Yamaguchi, et al., J. Chem. Phys. 121 (3), 1412 (2004).CrossRefGoogle Scholar
  65. 65.
    K. P. Huber and G. Herzberg, Molecular Spectra and Molecular Structure: IV. Constants of Diatomic Molecules (Van Nostrand Reinhold, New York, 1979).CrossRefGoogle Scholar
  66. 66.
    R. Z. Bakhtizin, A. I. Oreshkin, P. Murugan, et al., Chem. Phys. Lett. 82 (4–6), 307 (2009).CrossRefGoogle Scholar
  67. 67.
    E. Abad, J. Ortega, and F. Flores, Phys. Status Solidi A 209 (4), 636 (2012).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • A. M. Lebedev
    • 1
  • L. P. Sukhanov
    • 1
    • 2
  • M. Brzhezinskaya
    • 3
  • K. A. Menshikov
    • 1
  • N. Yu. Svechnikov
    • 1
  • R. G. Chumakov
    • 1
  • V. G. Stankevich
    • 1
  1. 1.National Research Centre “Kurchatov Institute”MoscowRussia
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudny, Moscow oblastRussia
  3. 3.Helmholtz-Zentrum Berlin für Materialien und EnergieBerlinGermany

Personalised recommendations