Phase transformations in opals under thermal and thermobaric actions

  • V. A. Somenkov
  • S. S. Agafonov
  • M. N. Shushunov
  • V. P. Filonenko
  • V. M. Masalov
  • G. A. Emelchenko
Article
  • 22 Downloads

Abstract

The ultrasmall- and wide-angle neutron diffraction methods are used to study multiscale structures and phase transformations in synthetic opals at different temperatures and pressures (as high as 1500°C and 10 GPa, respectively). Monodisperse colloidal particles of amorphous silica dioxide (a-SiO2) with an average diameter of 150‒1700 nm whose deviation from the mean is less than 5% are synthesized to fabricate the samples. Opal matrices up to 3 cm thick are obtained via the natural sedimentation of a SiO2-globule suspension followed by drying and heat treatment. Neutron-diffraction processes are investigated using a DISK multidetector superposition diffractometer mounted at the IR-8 reactor of the National Research Centre Kurchatov Institute at a neutron wavelength of 1.668 Å. Ultrasmall-angle diffraction experiments are performed in the two-crystal mode of a STOIK spectrometer.

Keywords

neutron diffraction neutron filters diamond materials 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. V. Sanders, Nature 204, 1151 (1964).CrossRefGoogle Scholar
  2. 2.
    T. F. Krauss, R. M. De La Ru., Prog. Quantum Electron. 23, 51 (1999).CrossRefGoogle Scholar
  3. 3.
    J. F. Galisteo-López, M. Ibisate, R. Sapienza, L. S. Froufe-Pérez, Á. Blanco, and C. Lópe., Adv. Mater. 23, 30 (2011).CrossRefGoogle Scholar
  4. 4.
    T. Yokoi, Y. Sakomoto, O. Terasaki, Y. Kubota, T. Okubo, and T. Tatsum., J. Am. Chem. Soc. 128, 13664 (2006).CrossRefGoogle Scholar
  5. 5.
    V. M. Masalov, N. S. Sukhinina, and G. A. Emel’chenk., Phys. Solid State 53 (6), 1135 (2011).CrossRefGoogle Scholar
  6. 6.
    W. Stober, A. Fink, and E. J. Bohn, J. Colloid Interface Sci. 26, 62 (1968).CrossRefGoogle Scholar
  7. 7.
    V. P. Glazkov, I. V. Naumov, and S. Sh. Shilshtei., Nucl. Instrum. Methods Phys. Res., Sect. A 264, 369 (1988).CrossRefGoogle Scholar
  8. 8.
    I. V. Naumov, S. A. Petushkov, K. M. Podurets, V. A. Somenkov, S. Sh. Shil’shtein, and A. B. Tyugin, Preprint IAE-4368/4 (Kurchatov Institute of Atomic Energy, Moscow, 1986).Google Scholar
  9. 9.
    V. A. Somenkov, S. S. Agafonov, V. P. Glazkov, E. S. Kovalenko, and M. N. Shushuno., Crystallogr. Rep. 60 (1), 34 (2015).CrossRefGoogle Scholar
  10. 10.
    V. M. Masalov, N. S. Sukhinina, E. A. Kudrenko, and G. A. Emelchenk., Nanotecnology 22, 275718 (2011).CrossRefGoogle Scholar
  11. 11.
    L. G. Khvostantsev, V. N. Slesarev, and V. V. Brazhki., High Pressure Res. 24, 371 (2004).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2017

Authors and Affiliations

  • V. A. Somenkov
    • 1
  • S. S. Agafonov
    • 1
  • M. N. Shushunov
    • 1
  • V. P. Filonenko
    • 2
  • V. M. Masalov
    • 3
  • G. A. Emelchenko
    • 3
  1. 1.National Research Centre Kurchatov InstituteMoscowRussia
  2. 2.Vereshchagin Institute for High Pressure PhysicsRussian Academy of SciencesTroitskRussia
  3. 3.Institute of Solid State PhysicsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations