Atomistic simulation of the segregation of alloying elements close to radiation-induced defects in irradiated Fe–Cr–Ni BCC alloys

Abstract

Ferritic-martensitic steels alloyed with Cr and Ni are promising structural materials for the nuclear and thermonuclear power industry. Under the influence of neutron irradiation degradation of the plastic properties of these materials takes place as a result of the generation of extended defects such as dislocation loops, and the formation of new phases (precipitates). In this work the atomistic computer simulation of thermodynamic processes of the precipitation of alloying elements is carried out using the newest model of ternary Fe–Ni–Cr bcc (body-centered cubic) alloys and the Metropolis Monte Carlo method in combination with the method of classical Molecular Dynamics. The composition and microstructure of Cr–Ni clusters formed in defect-free alloys and alloys containing dislocation loops, depending on the temperature and concentrations of Ni and Cr, are studied. An increase in the Ni solubility limit in the presence of dislocation loops by 100–200 K, depending on the Ni concentration, is detected. The synergetic effect of Ni and Cr segregation near dislocation loops in ternary alloy is established: the presence of Ni weakens Cr segregation, whereas Cr can either attenuate or amplify Ni segregation depending on the concentration of Ni in the alloy, the temperature and the type (Burgers vector) of loop. In general, in ternary Fe–Cr–Ni alloys, the total segregation effect is less pronounced than in binary Fe–Ni and Fe–Cr alloys.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    G. S. Was, Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, Berlin, Heidelberg, New York, 2007).

    Google Scholar 

  2. 2.

    D. Hull and D. J. Bacon, Introduction to Dislocations (Butterworth-Heinemann, Oxford, 2001).

    Google Scholar 

  3. 3.

    A. V. Bakaev, D. A. Tereye., P. Yu. Grigor’ev, and E. E. Zhurkin, J. Surf. Invest.: X-ra., Synchrotron Neutron Tech. 9 (2), 290 (2015).

    Article  Google Scholar 

  4. 4.

    C. Pareige, V. Kuksenko, and P. Pareig., J. Nucl. Mater. 456, 471 (2015).

    Article  Google Scholar 

  5. 5.

    V. Kuksenko, C. Pareige, and C. Genevoi., J. Nucl. Mater. 415, 61 (2011).

    Article  Google Scholar 

  6. 6.

    V. Kuksenko, C. Pareige, and C. Genevoi., J. Nucl. Mater. 434, 49 (2013).

    Article  Google Scholar 

  7. 7.

    V. Kuksenko, C. Pareige, and P. Pareig., J. Nucl. Mater. 432, 160 (2013).

    Article  Google Scholar 

  8. 8.

    L. Malerba, G. Bonny, D. Terentyev, et al., J. Nucl. Mater. 442, 486 (2013).

    Article  Google Scholar 

  9. 9.

    V. A. Kirsanov, Computer Experiment in Atomic Materials Science (Energoatomizdat, Moscow, 1990) [in Russian].

    Google Scholar 

  10. 10.

    D. Terentyev, A. Bakaev, and E. E. Zhurkin, J. Phys.: Condens. Matter 26, 165 (2014).

    Google Scholar 

  11. 11.

    Allen, M.P. and Tildesley, D.J., Computer Simulations of Liquids (Clarendon Press, Oxford, 1987).

    Google Scholar 

  12. 12.

    R. LeSar, Introduction to Computational Materials Science: Fundamentals to Applications (Cambridge Univ. Press, Cambridge, 2013).

    Google Scholar 

  13. 13.

    N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, and A. H. Telle., J. Chem. Phys. 21, 1087 (1953).

    Article  Google Scholar 

  14. 14.

    G. Bonny, R. C. Pasianot, E. E. Zhurkin, and M. Ho., Comput. Mater. Sci. 50, 2216 (2011).

    Article  Google Scholar 

  15. 15.

    E. E. Zhurkin, R. Pereira, N. Castin, et al., Mater. Res. Soc. Symp. Proc. 1125, 121 (2008).

    Article  Google Scholar 

  16. 16.

    M. Hou, V. S. Kharlamov, and E. E. Zhurki., Phys. Rev. B 68, 195408 (2002).

    Article  Google Scholar 

  17. 17.

    E. E. Zhurkin, D. Terentyev, M. Hou, et al., J. Nucl. Mater. 417, 1082 (2011).

    Article  Google Scholar 

  18. 18.

    D. Terentyev, X. He, E. Zhurkin, and A. Bakae., J. Nucl. Mater. 408, 161 (2011).

    Article  Google Scholar 

  19. 19.

    E. E. Zhurkin, M. Hou, and J. Kuriplac., Nucl. Instrum. Methods Phys. Res., Sect. B 269, 1679 (2011).

    Article  Google Scholar 

  20. 20.

    G. Bonny, D. Terentyev, E. E. Zhurkin, et al., J. Nucl. Mater. 452, 486 (2014).

    Article  Google Scholar 

  21. 21.

    G. Bonny, D. Terentyev, A. Bakaev, et al., J. Nucl. Mater. 442, 282 (2013).

    Article  Google Scholar 

  22. 22.

    D. Terentyev, X. He, G. Bonny, et al., J. Nucl. Mater. 457, 173 (2015).

    Article  Google Scholar 

  23. 23.

    G. Bonny, D. Terentyev, and R. C. Pasiano., Modell. Simul. Mater. Sci. Eng. 19, 1065 (2011).

    Article  Google Scholar 

  24. 24.

    D. Terentyev and A. Bakae., J. Nucl. Mater. 442, 208 (2013).

    Article  Google Scholar 

  25. 25.

    G. Bonny, A. Bakaev, P. Olsson, C. Domain, E. Zhurkin, and M. Possel., J. Nucl. Mater. 484, 42 (2017).

    Article  Google Scholar 

  26. 26.

    A. R. Leach, Molecular Modelling: Principles and Applications (Prentice Hall, Harlow, 2001).

    Google Scholar 

  27. 27.

    E. E. Zhurkin and M. Hou, J. Phys.: Condens. Matter 12, 6735 (2000).

    Google Scholar 

  28. 28.

    M. S. Daw and M. I. Baske., Phys. Rev. B 29, 6443 (1984).

    Article  Google Scholar 

  29. 29.

    G. Bonny, R. C. Pasianot, L. Malerba, et al., Modell. Simul. Mater. Sci. Eng. 17, 025010 (2009).

    Article  Google Scholar 

  30. 30.

    P. Olsson, J. Wallenius, C. Domain, et al., Phys. Rev. B 72, 214119 (2005).

    Article  Google Scholar 

  31. 31.

    G. Bonny, R. C. Pasianot, D. Terentyev, et al., Philos. Mag. 91, 1724 (2011).

    Article  Google Scholar 

  32. 32.

    P. Olsson, T. P. C. Klaver, C. Domain, et al., Phys. Rev. B 81, 054102 (2010).

    Article  Google Scholar 

  33. 33.

    I. M. Neklyudov and V. N. Voyevodin, J. Nucl. Mater. 212–215, 39 (1994).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to E. E. Zhurkin.

Additional information

Original Russian Text © A.V. Bakaev, D.A. Terentyev, E.E. Zhurkin, 2017, published in Poverkhnost’, 2017, No. 6, pp. 34–42.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bakaev, A.V., Terentyev, D.A. & Zhurkin, E.E. Atomistic simulation of the segregation of alloying elements close to radiation-induced defects in irradiated Fe–Cr–Ni BCC alloys. J. Synch. Investig. 11, 606–613 (2017). https://doi.org/10.1134/S1027451017030193

Download citation

Keywords

  • high-Cr ferritic-martensitic steels
  • neutron irradiation
  • radiation-induced defects
  • dislocation loops
  • segregation
  • atomistic modeling
  • Metropolis method
  • Monte Carlo method