Skip to main content
Log in

Complex analysis of microparticles deposited from arc-discharge plasma on vacuum-chamber walls

  • Published:
Journal of Surface Investigation: X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A complex study of the microparticles and condensate in the form of films deposited from an arcplasma flow on vacuum-chamber walls is performed. The study includes determination of the chemical and phase composition of the particles, their morphology, differential thermal analysis, electron microscopy, and also electron paramagnetic resonance and infrared spectroscopy. The plasma flow propagates in electric and magnetic fields. The formed structures are a result of the interaction of particles emitted from the cathode spot. In this case, the formation and existence of current layers in the plasma flow are assumed. The retrograde rotation of the cathode spot and plasma flow are analyzed. The conditions for the formation of fractal structures from plasma are determined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Anders, Cathodic Arcs: From Fractal Spots to Energetic Condensation (Springer Science, Berkley, 2008).

    Book  Google Scholar 

  2. I. I. Aksenov, A. A. Andreev, V. G. Bren’, I. V. Gavrilko, E. E. Kudryavtseva, V. V. Kunchenko, V. V. Lokoshko, Yu. T. Miroshnichenko, V. V. Padalka, A. A. Romanov, et al., Ukr. Fiz. Zh. 24 (4), 515 (1979).

    Google Scholar 

  3. S. Ya. Betsofen, L. M. Petrov, A. A. Il’in, I. O. Bannykh, and A. N. Lutsenko, Poverkhnost, No. 1, 39 (2004).

    Google Scholar 

  4. W. Kratschmer, L. D. Lamb, and K. Fostiropoulos, Nature 347, 354 (1990).

    Article  Google Scholar 

  5. I. A. Krinberg, Tech. Phys. Lett. 29 (6), 504 (2003).

    Article  Google Scholar 

  6. N. A. Smolanov and N. A. Pankin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (5), 1089 (2014).

    Article  Google Scholar 

  7. N. A. Smolanov, N. A. Pan’kin, V. V. Batin, and E. P. Pavkin, Prikl. Fiz., No. 1, 30 (2014).

    Google Scholar 

  8. N. A. Smolanov and N. A. Pankin, J. Phys.: Conf. Ser. 479, 012012 (2013).

    Google Scholar 

  9. N. A. Pankin and N. A. Smolanov, J. Phys.: Conf. Ser. 479, 012006 (2013).

    Google Scholar 

  10. N. A. Smolanov, N. A. Pankin, and V. P. Mishkin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (2), 383 (2015).

    Article  Google Scholar 

  11. V. V. Beregovskii, S. A. Shchurenkova, M. K. Marakhtanov, and D. V. Dukhopel’nikov, Uprochnyayushchie Tekhnol. Pokrytiya, No. 1, 3 (2009).

    Google Scholar 

  12. N. A. Smolanov and V. A. Neverov, Pis’ma Mater. 5 (2), 179 (2015).

    Google Scholar 

  13. N. A. Smolanov, N. A. Pankin, and V. P. Mishkin, Vak. Tekh. Tekhnol. 24 (2), 99 (2014).

    Google Scholar 

  14. N. A. Smolanov and N. A. Pankin, in Proc. 10th Int. Conference “Films and Coatings-2011” (St. Petersburg, 2011), p.256.

    Google Scholar 

  15. A. I. Morozov, Introduction to Plasma Dynamics (Fizmatlit, Moscow, 2008) [in Russian].

    Google Scholar 

  16. A. V. Nedospasov, Usp. Fiz. Nauk 185, 613 (2015).

    Article  Google Scholar 

  17. Yu. K. Bobrov, V. P. Bystrov, and A. A. Rukhadze, Tech. Phys. 51 (5), 567 (2006).

    Article  Google Scholar 

  18. E. S. Dzlieva, M. A. Ermolenko, and V. Yu. Karasev, Tech. Phys. 57 (7), 945 (2012).

    Article  Google Scholar 

  19. V. I. Krauz, Yu. V. Martynenko, N. Yu. Svechnikov, V. P. Smirnov, V. G. Stankevich, and L. N. Khimchenko, Usp. Fiz. Nauk 180 (10), 1055 (2010).

    Article  Google Scholar 

  20. R. Kh. Zalavutdinov, A. E. Gorodetskii, and A. P. Zakharov, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sint., No. 1, 39 (2011).

    Google Scholar 

  21. M. Kleman and O. D. Lavrentovich, Physical Foundations of Partially Ordered Media: Liquid Crystals, Colloids, Fractal Structures, Polymers and Biological Objects (Fizmatlit, Moscow, 2007) [in Russian].

    Google Scholar 

  22. A. G. Frank, Usp. Fiz. Nauk 180, 982 (2010).

    Article  Google Scholar 

  23. L. S. Ledentsov and B. V. Somov, Usp. Fiz. Nauk 185, 113 (2015).

    Article  Google Scholar 

  24. G. V. Ostrovskaya, Tech. Phys. 58 (4), 523 (2013).

    Article  Google Scholar 

  25. V. P. Budaev and L. N. Khimchenko, Preprint IAE-6404/7 (Russian Scientific Centre Kurchatov Institute, Moscow, 2006).

    Google Scholar 

  26. V. P. Budaev, S. P. Savin, and L. M. Zelenyi, Usp. Fiz. Nauk 181 (9), 905 (2011).

    Article  Google Scholar 

  27. K. K. Zabello, A. M. Chaly, and S. M. Shkol’nik, Tech. Phys. Lett. 39 (1), 120 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. A. Smolanov.

Additional information

Original Russian Text © N.A. Smolanov, 2017, published in Poverkhnost’, 2017, No. 3, pp. 81–88.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Smolanov, N.A. Complex analysis of microparticles deposited from arc-discharge plasma on vacuum-chamber walls. J. Surf. Investig. 11, 353–360 (2017). https://doi.org/10.1134/S1027451017020161

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451017020161

Keywords

Navigation