Special features of restructuring of the defect structure of La2Zr2O7 and YSZ films in a rotating magnetic field

  • F. Kh. Chibirova
  • G. V. Kotina
  • E. A. Bovina
  • D. V. Tarasova
  • A. A. Polisan
  • Yu. N. Parkhomenko
Article
  • 19 Downloads

Abstract

The effect of magnetic-structure processing in a rotating magnetic field on the structure and texture of a layer of yttrium-stabilized zirconium oxide ZrO2 (YSZ) obtained by the ABAD method on a steel tape substrate is studied. The effect of magnetic preprocessing of the YSZ surface layer on the structure and texture of the epitaxial layer of lanthanum zirconate La2Zr2O7 (LZO) grown by means of liquid-phase polymer-assisted nanoparticle deposition (PAND) on the YSZ layer is also considered. We reveal the development of the structure and texture of the YSZ layer after magnetic-structure processing, which has a positive effect on the epitaxial growth of the deposited LZO layer and improves its structure and texture. A TEM image of the cross section of the LZO epitaxial layer, grown on the YSZ layer after magnetic-structure processing, showed the presence of small (2–5 nm) closed-type structure pores. The out-of-plane texture of the LZO layer grown on the YSZ layer after magnetic-structure processing significantly improves (Δω = 2.65°) compared with the texture of the LZO layer grown on the surface of the YSZ layer without magnetic-structure processing (Δω = 0.85°).

Keywords

second-generation high-temperature superconducting wire (HTS-2 wires) buffer layer magneticstructure processing texture critical current 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Second-Generation HTS Conductors, Ed. by A. Goyal (Springer, New York, 2005; URSS, Moscow, 2010).Google Scholar
  2. 2.
    H. W. Sung, C. Contoni, and A. Goyal, MRS Commun. 5, 533 (2015). doi 10.1557/mrc.2015.62Google Scholar
  3. 3.
    F. Kh. Chibirova, RF Patent No. 2 387 050, 2010.Google Scholar
  4. 4.
    F. Kh. Chibirova, G. V. Kotina, E. A. Bovina, D. V. Tarasova, V. R. Khalilov, A. A. Polisan, and Yu. N. Parkhomenko, Mod. Electron. Mater. 1, 50 (2015). doi 10.1016/j.moem.2015.10.004CrossRefGoogle Scholar
  5. 5.
    F. Kh. Chibirova, G. V. Kotina, E. A. Bovina, D. V. Tarasova, V. R. Khalilov, A. A. Polisan, and Yu. N. Parkhomenko, Inorg. Mater. 51 (15), 1465 (2015). doi 10.1134/S0020168515150054CrossRefGoogle Scholar
  6. 6.
    F. Kh. Chibirova, Mod. Phys. Lett. 19 (23), 1119 (2005). 10.1142/S0217984905009018CrossRefGoogle Scholar
  7. 7.
    G. I. Distler, V. M. Kanevskiy, V. V. Moskvin, Dokl. Akad. Nauk SSSR 268 (3), 591 (1983).Google Scholar
  8. 8.
    V. R. Khalilov and F. Kh. Chibirova, Int. J. Mod. Phys. A 21 (15), 3171 (2006). doi 10.1142/S0217751X06031405CrossRefGoogle Scholar
  9. 9.
    V. R. Khalilov and F. Kh. Chibirova, J. Phys. A: Math. Theor. 40, 6469 (2007). doi 10.1088/1751-8113/40/24/013CrossRefGoogle Scholar
  10. 10.
    V. I. Alshits, E. V. Darinskaya, T.M. Perekalina, A.A. Urusovskaya, Sov. Phys. Solid State 29, 265 (1987).Google Scholar
  11. 11.
    L. Molina, H. Y. Tan, E. Biermans, K. J. Batenburg, J. Verbeeck, S. Bals, and G. Van Tendeloo, Supercond. Sci. Technol. 24, 065019 (2011). doi 10.1088/0953-2048/24/6/065019CrossRefGoogle Scholar
  12. 12.
    E. A. Bovina, J. V. Tarasova, and F. Kh. Chibirova, J. Phys.: Conf. Ser. 291, 012037 (2011) doi 10.1088/1742-6596/291/1/012037Google Scholar
  13. 13.
    F. Kh. Chibirova, Russ. J. Phys. Chem. A, 82 (11), 1969 (2008). doi 10.1134/S0036024408110320CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • F. Kh. Chibirova
    • 1
  • G. V. Kotina
    • 1
  • E. A. Bovina
    • 1
  • D. V. Tarasova
    • 1
  • A. A. Polisan
    • 1
  • Yu. N. Parkhomenko
    • 1
  1. 1.State Research and Design Institute of Rare Metal Industry “GIREDMET”MoscowRussia

Personalised recommendations