Skip to main content
Log in

Effect of residual atmospheric pressure on the development of electrostatic discharges at the surface of protective glasses of solar cells

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Electrostatic discharges obtained upon the irradiation of K-208 glass with 40-keV electrons at a flux density φ of 1010 to 2 × 1011 cm–2 s–1 are studied. The residual pressure p v in the vacuum chamber is varied from 5 × 10–5 to 5 × 10–3 Pa. Structural changes in the sample surfaces are studied by atomic-force microscopy. Depending on the pressure level, two types of discharges are observed in experiments at 3 × 1010 ≤ φ ≤ 1.2 × 1011 cm–2 s–1: a microprojection at the glass–ionized-residual-atmosphere surface and a discharge which develops along the irradiated surface. It is found that at 5 × 10–5p v ≤ 3 × 10–4 Pa and 8 × 1010 ≤ φ ≤ 1011 cm–2 s–1, discharges of the first type appear at the beginning of exposure; that is, an increase in microprojections is observed. Further, surface discharges propagate through these microprojections. At 10–3p v ≤ 5 × 10–3 Pa and 1010 ≤ φ ≤ 5 × 1010 cm–2 s–1, on the contrary, discharges of the second type are realized at the beginning. These discharges result in the appearance of channels with inhomogeneities on the glass, at which subsequently discharges of the first type occur. It is determined by calculations that in the region adjacent to the exposed glass surface, secondary electrons accelerated in a field of charge accumulated in the glass make the main contribution to the ionization of gases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. M. Brekhovskikh, Yu. N. Viktorova, and L. M. Landa, Radiation Effects in Glasses (Energoizdat, Moscow, 1982) [in Russian].

    Google Scholar 

  2. A. W. Zanderna, T. E. Madey, and C. J. Powell, Beam Effects, Surface Topography and Depth Profiling in Surface Analysis (Kluwer, New York, 2004).

    Google Scholar 

  3. J. F. Denatale and D. G. Howitt, Nucl. Instrum. Methods Phys. Res., Sect. B 1, 489 (1984).

    Article  Google Scholar 

  4. S. G. Boev and V. Ya. Ushakov, Radiation Accumulation of Charge in Solid Dielectrics and Methods of Diagnosis (Energoatomizdat, Moscow, 1991) [in Russian].

    Google Scholar 

  5. T. Gavenda, O. Gedeon, and K. Jurek, Nucl. Instrum. Methods Phys. Res., Sect. B 322, 7 (2014).

    Article  Google Scholar 

  6. Model of Space, Vol. 2, No. 8, Impact of the Space Environment on the Spacecraft Materials and Equipment, Ed. by L. S. Novikov (Mosk. Gos. Univ., Moscow, 2007) [in Russian].

  7. O. Gedeon, S. Charvátová, and J. Machácek, Adv. Mater. Res. 39–40, 65 (2008).

    Article  Google Scholar 

  8. N. Chopra, N. P. Singh, S. Baccaro, and G. Sharma, Phys. B 407 (8), 1209 (2012).

    Article  Google Scholar 

  9. G. A. Mesyats and D. I. Proskurovskii, Pulse Discharge in Vacuum (Nauka, Novosibirsk, 1984; Springer, Berlin, 1989).

    Book  Google Scholar 

  10. R. Kh. Khasanshin and L. S. Novikov, Perspekt. Mater., No. 8, 13 (2014).

    Google Scholar 

  11. R. Kh. Khasanshin, L. S. Novikov, and S. B. Korovin, Fiz. Khim. Obrab. Mater., No. 5, 5 (2014).

    Google Scholar 

  12. R. Kh. Khasanshin, L. S. Novikov, and S. B. Korovin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (1), 81 (2015). doi 10.7868/S0207352815010114

    Article  Google Scholar 

  13. R. Kh. Khasanshin, L. S. Novikov, L. S. Gatsenko, and Ya. B. Volkova, Perspekt. Mater., No. 1, 22 (2015).

    Google Scholar 

  14. I. M. Bronshtein and B. S. Fraiman, Secondary Electron Emission (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  15. W. Hwang, Y.-K. Kim, and M. E. Rudd, J. Chem. Phys. 104 (8), 2956 (1996).

    Article  Google Scholar 

  16. H. C. Straub, P. Renault, B. G. Lindsay, K. A. Smith, and R. F. Stebbings, Phys. Rev. A: At., Mol., Opt. Phys. 54 (3), 2146 (1996).

    Article  Google Scholar 

  17. Y. Itikawa, J. Phys. Chem. Ref. Data 35 (1), 31 (2006).

    Article  Google Scholar 

  18. G. A. Mesyats, Phys.–Usp. 51, 79 (2008).

    Article  Google Scholar 

  19. V. F. Pichugin and T. S. Frangul’yan, Perspekt. Mater., No. 6, 26 (2000).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. H. Khasanshin.

Additional information

Original Russian Text © R.H. Khasanshin, L.S. Novikov, S.B. Korovin, 2016, published in Poverkhnost’, 2016, No. 10, pp. 14–24.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khasanshin, R.H., Novikov, L.S. & Korovin, S.B. Effect of residual atmospheric pressure on the development of electrostatic discharges at the surface of protective glasses of solar cells. J. Surf. Investig. 10, 1001–1010 (2016). https://doi.org/10.1134/S102745101605030X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745101605030X

Keywords

Navigation