Skip to main content
Log in

On the formation of X-ray microbeams utilizing a short-focus refractive lens and a laboratory radiation source

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The possibility of focusing an X-ray beam from a laboratory radiation source using a short-focus refractive composite lens is shown. The lens consists of 161 spherical biconcave epoxy lenses, each with a curvature radius of 50 μm. A Metal Jet (ExcilliumTM) microfocus X-ray tube, with a focal-spot size of 20 μm and containing a liquid helium anode, is used as a radiation source. The size of the focal spot in the image plane is 2.4 μm, which corresponds to the theoretical estimate. The possibility of using the composite refractive lens to form a parallel polychromatic X-ray beam is demonstrated. The results obtained allow discussion of the possibility of applying short-focus refractive X-ray lenses for X-ray microanalysis using laboratory sources; such microanalysis is currently a prerogative of synchrotron radiation sources only.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Hamamatsu. www.hamamatsu.com/jp/en/3028.html.

  2. Excillium. www.excillum.com/technology/metal-jettechnology. html.

  3. A. C. Bloomer and U. W. Arndt, Acta Crystallogr., Sect. D: Biol. Crystallogr. 56, 109 (2000).

    Article  Google Scholar 

  4. A. Snigirev, V. Kohn, I. Snigireva, and B. Lengeler, Nature 384, 49 (1996).

    Article  Google Scholar 

  5. L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, et al., J. Phys.: Conf. Ser. 186, 012062 (2009).

    Google Scholar 

  6. A. F. Isakovic, A. Stein, J. B. Warren, et al., J. Synchrotron Radiat. 16, 1107 (2009).

    Article  Google Scholar 

  7. L. Shabel’nikov, V. Nazmov, F. J. Pantenburg, et al., Proc. SPIE 4783, 176 (2002).

    Article  Google Scholar 

  8. M. Polikarpov, I. Snigireva, J. Morse, et al., J. Synchrotron Radiat. 22, 1107 (2015). doi 10.1107/s1600577514021742

    Article  Google Scholar 

  9. S. Terentyev, V. Blank, S. Polyakov, et al., Appl. Phys. Lett. 107, 111108 (2015). doi 10.1063/1.4931357

    Article  Google Scholar 

  10. C. G. Schroer and B. Lengeler, Phys. Rev. Lett. 94, 054802 (2005).

    Article  Google Scholar 

  11. B. Lengeler, C. G. Schroer, M. Kuhlmann, et al., J. Phys. D: Appl. Phys. 38, A218 (2005).

    Article  Google Scholar 

  12. C. G. Schroer, M. Kuhlmann, U. T. Hunger, et al., J. Environ. Monit. 8, 33 (2006). doi 10.1063/1.1556960

    Article  Google Scholar 

  13. I. Snigireva and A. Snigirev, J. Environ. Monit. 8, 1039 (2006). doi 10.1039/b511446m

  14. B. Lengeler, C. G. Schroer, M. Richwin, et al., Appl. Phys. Lett. 74 (26), 3924 (1999).

    Article  Google Scholar 

  15. B. Lengeler, C. G. Schroer, J. Tummler, et al., J. Synchrotron Radiat. 6, 1153 (1999).

    Article  Google Scholar 

  16. A. Snigirev, I. Snigireva, M. Grigoriev, et al., Proc. SPIE 6705, 670506 (2007).

    Article  Google Scholar 

  17. V. Aristov, M. Grigoriev, S. Kuznetsov, et al., Appl. Phys. Lett. 77, 4058 (2000).

    Article  Google Scholar 

  18. A. Snigirev and I. Snigireva, in Modern Developments in X-Ray and Neutron Optics (Springer, Berlin-Heidelberg, 2008), Vol. 137, Chap. 17.

    Google Scholar 

  19. B. Lengeler, C. G. Schroer, M. Kuhlmann, et al., Proc. SPIE 5539, 1 (2004).

    Article  Google Scholar 

  20. Y. I. Dudchik and N. N. Kolchevsky, Nucl. Instrum. Methods Phys. Res., Sect. A 421, 361 (1999).

    Article  Google Scholar 

  21. Y. I. Dudchik, N. N. Kolchevsky, F. F. Komarov, et al., Nucl. Instrum. Methods Phys. Res., Sect. A 454, 512 (2000).

    Article  Google Scholar 

  22. C. K. Gary, H. Park, L. W. Lombardo, et al., Appl. Phys. Lett. 90, 181111 (2007). doi 10.1063/1.2734895

    Article  Google Scholar 

  23. Y. I. Dudchik, F. F. Komarov, M. A. Piestrup, et al., Spectrochimica Acta, Part B 62, 598 (2007). doi 10.1016/j.sab.2007.05.009

    Article  Google Scholar 

  24. M. A. Piestrup, C. K. Gary, H. Park, et al., Appl. Phys. Lett. 86, 131104 (2005). doi 10.1063/1.1894589

    Article  Google Scholar 

  25. Y. I. Dudchik, N. N. Kolchevsky, F. F. Komarov, et al., Rev. Sci. Instrum. 75, 4651 (2004). doi 10.1063/1.1809289

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Y. I. Dudchik.

Additional information

Original Russian Text © Y.I. Dudchik, P.A. Ershov, M.V. Polikarpov, A.Y. Goikhman, I.I. Snigireva, A.A. Snigirev, 2016, published in Poverkhnost’, 2016, No. 10, pp. 25–30.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dudchik, Y.I., Ershov, P.A., Polikarpov, M.V. et al. On the formation of X-ray microbeams utilizing a short-focus refractive lens and a laboratory radiation source. J. Surf. Investig. 10, 1011–1015 (2016). https://doi.org/10.1134/S1027451016050268

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016050268

Keywords

Navigation