Skip to main content
Log in

Backscattered electron imaging of micro- and nanostructures: 5. SEM signal formation model

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

A semiempirical model describing how images are formed in a scanning electron microscope operating in the backscattered electron collection mode is discussed. The model involves four imaging mechanisms. The model and the experiment are compared for grooves in silicon with rectangular and trapezoidal relief profiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Goldstein, D. Newbury, P. Echlin, et al., Scanning Electron Microscopy and X-Ray Microanalysis (Plenum, New York, 1981).

    Book  Google Scholar 

  2. L. Reimer, Scanning Electron Microscopy: Physics of Image Formation and Microanalysis (Springer, New York, 1998).

    Book  Google Scholar 

  3. International Technology Roadmap for Semiconductors (Metrology, 2013).

  4. H. M. Marchman, J. E. Griffith, J. Z. Y. Guo, J. Frackoviak, and G. K. Celler, J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct.–Process., Meas., Phenom. 12 (6), 3585 (1994).

    Article  Google Scholar 

  5. Yu. A. Novikov and A. V. Rakov, Russian Microelectronics 25 (6), 368 (1996).

    Google Scholar 

  6. Yu. A. Novikov and A. V. Rakov, Measurement Techniques, 42 (1). 20 (1999).

    Article  Google Scholar 

  7. M. T. Postek and A.E. Vladar, “Critical dimension metrology and the scanning electron microscope,” in Handbook of Silicon Semiconductor Metrology, Ed. by A. C. Diebold, (Marcel Dekker, New York–Basel, 2001), p. 295.

    Google Scholar 

  8. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. V. Ozerin, Yu. I. Plotnikov, A. M. Prokhorov, and A. V. Rakov, Russian Microelectronics 31 (4), 207 (2002).

    Article  Google Scholar 

  9. Yu. A. Novikov, V. P. Gavrilenko, A. V. Rakov, and P. A. Todua, Proc. SPIE 7042, 704208–1 (2008). doi 10.1117/12.794834

    Article  Google Scholar 

  10. V. P. Gavrilenko, V. B. Mityukhlyaev, Yu. A. Novikov, Yu. V. Ozerin, A. V. Rakov, and P. A. Todua, Meas. Sci. Technol. 20, 20–1 (2009). doi 10.1088/0957-0233/20/8/084022

    Article  Google Scholar 

  11. C. G. Frase, W. Hassler-Grohne, G. Dai, H. Bosse, Yu. A. Novikov, and A. V. Rakov, Meas. Sci. Technol. 18, 439 (2007). doi 10.1088/0957-0233/18/2/S16

    Article  Google Scholar 

  12. Yu. A. Novikov and I. Yu. Stekolin, Problems of linear measurements of microobjects in nanometer and submicron ranges. Moscow: Nauka, 1995, P. 41–65. (Proc. IOFAN, Vol. 49), [in Russian].

    Google Scholar 

  13. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. V. Ozerin, Yu. I. Plotnikov, and A. V. Rakov, Russian Microelectronics 33 (6), 342 (2004).

    Article  Google Scholar 

  14. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, P. A. Todua, and Ch. P. Volk, Proc. SPIE 7272, 72720Z–1 (2009). doi 10.1117/12.813514

    Article  Google Scholar 

  15. V. P. Gavrilenko, E. N. Lesnovsky, Yu. A. Novikov, A. V. Rakov, P. A. Todua, and M. N. Filippov, Bull. Russ. Acad. Sci.: Phys. 73 (4), 433 (2009).

    Article  Google Scholar 

  16. V. P. Gavrilenko, M. N. Filippov, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7378, 737812–1 (2009). doi 10.1117/12.813514

    Article  Google Scholar 

  17. V. P. Gavrilenko, V. A. Kalnov, Yu. A. Novikov, A. A. Orlikovsky, A. V. Rakov, P. A. Todua, K. A. Valiev, and E. N. Zhikharev, Proc. SPIE 7272, 727227–1 (2009). doi 10.1117/12.814062

    Article  Google Scholar 

  18. M. A. Danilova, V. B. Mityukhlyaev, Yu. A. Novikov, Yu. V. Ozerin, A. V. Rakov, and P. A. Todua, Measurement Techniques 51 (8), 839 (2008).

    Article  Google Scholar 

  19. Yu. A. Novikov, A. V. Rakov, and M. N. Filippov, Bul. Rus. Acad. Sci., Physics 62 (3), 439 (1998).

    Google Scholar 

  20. M. N. Filippov, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7521, 752116–1 (2010). doi 10.1117/12.854696

    Article  Google Scholar 

  21. Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 6260, 626015–1 (2006). doi 10.1117/12.683401

    Article  Google Scholar 

  22. Yu. A. Novikov, A. V. Rakov, and M. N. Filippov, Mechanisms of secondary electron emission from a relief surface of solids. Moscow: Nauka. Fizmatlit, 1998, P. 100–108. (Proc. IOFAN, Vol. 55). [in Russian].

    Google Scholar 

  23. Yu. A. Novikov, A. V. Rakov, and M. N. Filippov, Izv. Vyssh. Uchebn. Zaved., Elektron., No. 1, 91 (1998) [in Russian].

    Google Scholar 

  24. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5 (5), 917 (2011).

    Article  Google Scholar 

  25. Yu. A. Novikov, S. V. Peshekhonov, and I. B. Strizhkov, Problems of linear measurements of microobjects in nanometer and submicron ranges. Moscow: Nauka, 1995, P. 20–40. (Proc. IOFAN, Vol. 49). [in Russian].

    Google Scholar 

  26. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (4), 775 (2014). doi 10.7868/S0207352814080101

    Article  Google Scholar 

  27. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (3), 78 (2015). doi 10.1134/S102745101503009X

    Google Scholar 

  28. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 9 (5), 1060 (2015). doi 10.1134/S1027451015050389

    Article  Google Scholar 

  29. Yu. A. Novikov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 10 (1), 221 (2016). doi 10.1134/S1027451016010286

    Article  Google Scholar 

  30. Yu. A. Novikov, Russian Microelectronics 43 (5), 361 (2014). doi 10.1134/S1063739714050047

    Article  Google Scholar 

  31. Ch. P. Volk, E. S. Gornev, Yu. A. Novikov, Yu. I. Plotnikov, A. V. Rakov, and P. A. Todua, Linear measurements in micrometer and nanometer ranges for microelectronics and nanotechnology. Moscow: Nauka, 2006, P. 77–120. (Proc. IOFAN, Vol. 62). [in Russian].

    Google Scholar 

  32. V. P. Gavrilenko, Yu. A. Novikov, A. V. Rakov, and P. A. Todua, Proc. SPIE 7042, 70420C–1 (2008). doi 10.1117/12.794891

    Article  Google Scholar 

  33. Yu. A. Novikov and A. V. Rakov, Mechanisms of secondary electron emission from a relief surface of solids. Moscow: Nauka. Fizmatlit, 1998, P. 3–99. (Proc. IOFAN, Vol. 55). [in Russian].

    Google Scholar 

  34. K. A. Valiev, Physics of Submicron Lithography (Plenum Press, New York, 1992).

    Book  Google Scholar 

  35. I. Brodie and J. J. Murray, The Physics of Microfabrication (Plenum, New York, 1982).

    Book  Google Scholar 

  36. R. W. Nosker, J. Appl. Phys. 40, 1872 (1969).

    Article  Google Scholar 

  37. P. A. Todua, V. P. Gavrilenko, Yu. A. Novikov, and A. V. Rakov, Proc. SPIE 7042, 704209–1 (2008). doi 10.1117/12.794926

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. A. Novikov.

Additional information

Original Russian Text © Yu.A. Novikov, 2016, published in Poverkhnost’, 2016, No. 9, pp. 12–26.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Novikov, Y.A. Backscattered electron imaging of micro- and nanostructures: 5. SEM signal formation model. J. Surf. Investig. 10, 892–905 (2016). https://doi.org/10.1134/S1027451016050116

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016050116

Keywords

Navigation