Skip to main content
Log in

Kinetics of the formation of pores and a change in the properties of materials in numerical models

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Vacancy-gas defects (VGDs) in thin layers of silicon carbide and a metal (SiC/Me) are formed upon 1–10-keV Xe++ ion implantation as the result of a first-order phase transition. The nonequilibrium stage of this transition is modeled by stochastic processes of point-defect clustering and the Brownian motion of cluster centers of mass under the action of potentials of their indirect elastic interaction in the crystal lattices of materials. A numerical experiment for studying pore formation during ion implantation is constructed on the basis of kinetic theory. Stochastic molecular dynamics makes it possible to analyze the formation of pores depending on functions of the nonequilibrium distribution of VGD nucleus clusters over sizes and coordinates of the layer volume. An example of calculation for conditions of phase-transition fluctuation instability is given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. A. Andrievskii, Fundamentals of Nanostructured Materials Science: Opportunities and Challenges (BINOM. Laboratoriya znanii, Moscow, 2012) [in Russian].

    Google Scholar 

  2. V. A. Gribkov, F. I. Grigor’ev, B. A. Kalin, and V. L. Yakushin, Prospective Radiation Beam Technologies for Processing Materials, Ed. by B.A. Kalina (Kruglyi God, Moscow, 2001) [in Russian].

  3. G. E. Murch, A. V. Evteev, E. V. Levchenko, and I. V. Belova, J. Basic Principl. Diffus. Theor. Exp. Appl. 42 (2009). diffusion-fundamentals.org.

  4. G. I. Zmievskaya, A. L. Bondareva, and V. V. Savchenko, Defect Diffus. Forum 353, 148 (2014).

    Article  Google Scholar 

  5. G. I. Zmievskaya, Plasma Phys. Rep. 23 (4), 340 (1997).

    Google Scholar 

  6. G. I. Zmievskaya and A. L. Bondareva, Dokl. Phys. 50 (4), 169 (2005).

    Article  Google Scholar 

  7. G. I. Zmievskaya and A. L. Bondareva, Plasma Phys. Rep. 37 (1), 87 (2011).

    Article  Google Scholar 

  8. D. S. Wiersma, Nat. Photon. 7, 188 (2013).

    Article  Google Scholar 

  9. L. A. Golovan’, V. Yu. Timoshenko, and P. K. Kashkarov, Phys.–Usp. 50, 595 (2007).

    Article  Google Scholar 

  10. Yu. S. Sigov, Computing Experiment: A Bridge between the Past and Future of Plasma Physics. Selected Works, Ed. by G. I. Zmievskaya and V. D. Levchenko (FIZMATLIT, Moscow, 2001) [in Russian].

  11. G. E. Norman and V. V. Stegailov, Nanostrukt. Mat. Fiz. Model. 4 (1), 31 (2011).

    Google Scholar 

  12. S. A. Kukushkin, Usp. Mekh., No. 2, 21 (2003).

    Google Scholar 

  13. F. Kh. Mirzoev, V. Ya. Panchenko, and L. A. Shelepin, Phys.–Usp. 39, 1 (1996).

    Article  Google Scholar 

  14. A. V. Bakaev and E. E. Zhurkin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5, 249 (2011).

    Article  Google Scholar 

  15. G. I. Zmievskaya, T. A. Averina, and A. L. Bondareva, Appl. Numer. Mat. 93, 15 (2015).

    Article  Google Scholar 

  16. A. L. Bondareva and G. I. Zmievskaya, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 4, 480 (2010).

    Article  Google Scholar 

  17. A. L. Bondareva, G. I. Zmievskaya, and A. V. Ivanov, Prikl. Fiz., No. 6, 91 (2009).

    Google Scholar 

  18. A. L. Bondareva and G. I. Zmievskaya, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 588 (2014).

    Article  Google Scholar 

  19. A. Bondareva, T. Levchenko, and G. Zmievskaya, Defect Diffus. Forum 297–301: Diffusion in Solids and Liquids V, (Trans Tech, Switzerland, 2010), p. 502.

    Google Scholar 

  20. G. I. Zmievskaya, A. L. Bondareva, V. D. Levchenko, and T. V. Levchenko, J. Phys. D: Appl. Phys. 40, 4842 (2007).

    Article  Google Scholar 

  21. A. A. Berzin, A. I. Morozov, and A. S. Sigov, Fiz. Tverd. Tela 38 (5), 1349 (1996).

    Google Scholar 

  22. T. A. Averina and S. S. Artem’ev, Sov. Phys. Dokl. 288 (4), 777 (1986).

    Google Scholar 

  23. S. S. Artem’ev and T. A. Averina, Numerical Analysis of Systems of Ordinary and Stochastic Differential Equations (Utrecht, 1997).

    Book  Google Scholar 

  24. A. Ivanov, Mod. Technol. 12, 29 (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Bondareva.

Additional information

Original Russian Text © G.I. Zmievskaya, A.L. Bondareva, 2016, published in Poverkhnost’, 2016, No. 8, pp. 33–40.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zmievskaya, G.I., Bondareva, A.L. Kinetics of the formation of pores and a change in the properties of materials in numerical models. J. Surf. Investig. 10, 802–808 (2016). https://doi.org/10.1134/S102745101604039X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745101604039X

Keywords

Navigation