Skip to main content
Log in

Doping-induced temperature evolution of a helicoidal spin structure in the MnGe compound

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The helicoidal magnetic structure of a MnGe compound doped with 25% Fe is studied by means of small-angle neutron scattering in a wide temperature range of 10–300 K. Analysis of the scattering-function profile demonstrates that magnetic structures inherent to both pure MnGe and its doped compounds are unstable. The doping of manganese monogermanide is revealed to lead to higher destabilization of the magnetic system. In passing from MnGe to Mn0.75Fe0.25Ge, the magnetic-ordering temperature T N decreases from 130 to 95 K, respectively. It is demonstrated that, at temperatures close to 0 K, the intensity of the contribution to scattering from stable spin helices decreases and the intensity of scattering by spin helix fluctuations increases with increasing impurity-metal concentration. An increased intensity of anomalous scattering caused by spin excitations existing in the system is observed. Helicoidal fluctuations and spin excitations corresponding to low temperatures indicate the quantum nature of the instability in the doped compound. However, MnGe doping with Fe atoms has no influence on the compound’s magnetic properties at temperatures of higher than T N. The temperature range of short-range ferromagnetic correlations is independent of concentrations and is restricted by temperatures T ranging from 175 to 300 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. Bak and M. H. Jensen, J. Phys. C: Solid State Phys. 13, L881 (1980).

    Article  Google Scholar 

  2. I. E. Dzyaloshinskii, Sov. Phys. JETP 19, 960 (1964).

    Google Scholar 

  3. B. Lebech, J. Bernhard, and T. Freltoft, J. Phys.: Condens. Matter 1, 6105 (1989).

    Google Scholar 

  4. N. Kanazawa, Y. Onose, T. Arima, D. Okuyama, K. Ohoyama, K. Wakimoto, K. Kakurai, S. Ishiwata, and Y. Tokura, Phys. Rev. Lett. 106, 156603 (2011).

    Article  Google Scholar 

  5. O. L. Makarova, A. V. Tsvyashenko, G. Andre, F. Porcher, L. N. Fomicheva, N. Rey, and I. Mirebeau, Phys. Rev. B: Condens. Matter Mater. Phys. 85, 205205 (2012).

    Article  Google Scholar 

  6. N. Kanazawa, J.-H. Kim, D. S. Inosov, J. S. White, N. Egetenmeyer, J. L. Gavilano, S. Ishiwata, Y. Onose, T. Arima, B. Keymer, and Y. Tokura, Phys. Rev. B: Condens. Matter Mater. Phys. 86, 134425 (2012).

    Article  Google Scholar 

  7. M. Deutsch, O. L. Makarova, T. C. Hansen, M. T. Fernandez-Diaz, V. A. Sidorov, A. V. Tsvyashchenko, L. N. Fomicheva, F. Porcher, S. Petit, K. Koepernik, U. K. Rossler, and I. Mirebeau, Phys. Rev. B: Condens. Matter Mater. Phys. 89, 180407 (2014).

    Article  Google Scholar 

  8. S. V. Grigoriev, N. Potapova, S.-A. Siegfried, V. A. Dyadkin, E. V. Moskvin, V. Dmitriev, D. Menzel, C. D. Dewhurst, D. Chernyshov, R. A. Sadykov, L. N. Fomicheva, and A. V. Tsvyashchenko, Phys. Rev. Lett. 110, 207201 (2013).

    Article  Google Scholar 

  9. K. Shibata, X. Z. Yu, T. Hara, D. Morikawa, N. Kanazawa, K. Kimoto, S. Ishiwata, Y. Matsui, and Y. Tokura, Nat. Nanotechnol. 8, 723 (2013).

    Article  Google Scholar 

  10. E. Altynbaev, S.-A. Siegfried, V. Dyadkin, E. Moskvin, D. Menzel, A. Heinemann, C. Dewhurst, L. Fomicheva, A. Tsvyashchenko, and S. Grigoriev, Phys. Rev. B: Condens. Matter Mater. Phys. 90, 174420 (2014).

    Article  Google Scholar 

  11. M. Deutsch, P. Bonville, A. V. Tsvyashchenko, L. N. Fomicheva, F. Porcher, F. Damay, S. Petit, and I. Mirebeau, Phys. Rev. B: Condens. Matter Mater. Phys. 90, 144401 (2014).

    Article  Google Scholar 

  12. J. F. DiTusa, et al., Phys. Rev. B: Condens. Matter Mater. Phys. 90, 144404 (2014).

    Article  Google Scholar 

  13. S. V. Grigoriev, S. V. Maleyev, A. I. Okorokov, Yu. O. Chetverikov, R. Georgii, P. Boni, D. Lamago, H. Eckerlebe, and K. Pranzas, Phys. Rev. B: Condens. Matter Mater. Phys. 72, 134420 (2005).

    Article  Google Scholar 

  14. S. V. Grigoriev, S. V. Maleyev, E. V. Moskvin, V. A. Dyadkin, P. Fouquet, and H. Eckerlebe, Phys. Rev. B: Condens. Matter Mater. Phys. 81, 144413 (2010).

    Article  Google Scholar 

  15. S. V. Grigoriev, E. V. Moskvin, V. A. Dyadkin, D. Lamago, T. Wolf, H. Eckerlebe, and S. V. Maleyev, Phys. Rev. B: Condens. Matter Mater. Phys. 83, 224411 (2011).

    Article  Google Scholar 

  16. M. Janoschek, M. Garst, A. Bauer, P. Krautscheid, R. Georgii, P. Boni, and C. Pfleiderer, Phys. Rev. B: Condens. Matter Mater. Phys. 87, 134407 (2013).

    Article  Google Scholar 

  17. J. Kindervater, W. Hausler, M. Janoschek, C. Pfleiderer, P. Boni, and M. Garst, Phys. Rev. B: Condens. Matter Mater. Phys. 89, 180408 (2014).

    Article  Google Scholar 

  18. J. H. Wernick, G. K. Wertheim, and R. C. Sherwood, Mater. Res. Bull. 7, 1431 (1972).

    Article  Google Scholar 

  19. A. Tsvyashchenko, J. Less Common Metals 99, 2 (1984).

    Article  Google Scholar 

  20. V. Dyadkin, S. Grigoriev, S. V. Ovsyannikov, E. Bykova, L. Dubrovinsky, A. Tsvyashchenko, L. N. Fomicheva, and D. Chernyshov, Acta Crystallogr., Sect. B: Struct. Sci., Cryst. Eng. Mater. 70, 676 (2014).

    Article  Google Scholar 

  21. E. Moskvin, S. Grigoriev, V. Dyadkin, H. Eckerlebe, M. Baenitz, M. Schmidt, and H. Wilhelm, Phys. Rev. Lett. 110, 077207 (2013).

    Article  Google Scholar 

  22. A. I. Okorokov, V. V. Runov, B. P. Toperverg, et al., JETP Lett. 43, 503 (1986).

    Google Scholar 

  23. V. Deriglazov, A. Okorokov, V. Runov, B. Toperverg, R. Kampmann, H. Eckerlebe, W. Schmidt, and W. Lobner, Phys. B 262, 181 (1992).

    Google Scholar 

  24. B. P. Toperverg, V. V. Deriglazov, and V. E. Mikhailova, Phys. A 183, 326 (1993).

    Google Scholar 

  25. S. V. Grigoriev, E. V. Altynbaev, H. Eckerlebe, and A. I. Okorokov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 1027 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. V. Altynbaev.

Additional information

Original Russian Text © E.V. Altynbaev, A.S. Sukhanov, S.-A. Siegfried, V.A. Dyadkin, E.V. Moskvin, D. Menzel, A. Heinemann, A. Schreyer, L.N. Fomicheva, A.V. Tsvyashenko, S.V. Grigoriev, 2016, published in Poverkhnost’, 2016, No. 8, pp. 5–11.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Altynbaev, E.V., Sukhanov, A.S., Siegfried, SA. et al. Doping-induced temperature evolution of a helicoidal spin structure in the MnGe compound. J. Surf. Investig. 10, 777–782 (2016). https://doi.org/10.1134/S1027451016040224

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016040224

Keywords

Navigation