Skip to main content
Log in

Influence of annealing on the optical properties and chemical and phase compositions of tungsten-oxide films

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The results of investigating the optical properties, chemical composition, and crystal structure of tungsten-oxide films annealed in vacuum and air at 700°C are presented. The films are deposited by means of reactive dc magnetron sputtering. The samples involving single films, as well as heterostructures with tungsten- and titanium-oxide films, located on quartz glass substrates are examined. It is ascertained that, in different samples, annealing leads to different changes in the optical properties, chemical composition, and crystal structure of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. K. Deb, Appl. Opt. 8, 192 (1969).

    Article  Google Scholar 

  2. S. K. Deb, Philos. Mag. 27, 801 (1973).

    Article  Google Scholar 

  3. S. K. Deb, Sol. Energy Mater. Sol. Cells 92, 245 (2008).

    Article  Google Scholar 

  4. C. G. Granqvist, E. Avendano, and A. Azens, Thin Solid Films 442, 201 (2003).

    Article  Google Scholar 

  5. A. L. Gusev, T. N. Kondyrina, V. V. Kursheva, I. A. Pishchurova, O. N. Efimov, S. A. Kondrashov, and A. V. Vannikov, Al’tern. Energ. Ekol., No. 10, 122 (2009).

    Google Scholar 

  6. C. G. Granqvist, P. C. Lansaker, N. R. Mlyuka, G. A. Niklasson, and E. Avendano, Sol. Energy Mater. Sol. Cells 93, 2032 (2009).

    Article  Google Scholar 

  7. C. G. Granqvist, Sol. Energy Mater. Sol. Cells 60, 201 (2000).

    Article  Google Scholar 

  8. O. V. Anisimov, V. I. Gaman, N. K. Maksimova, Yu. P. Naiden, V. A. Novikov, E. Yu. Sevast’yanov, F. V. Rudov, and E. V. Chernikov, Semiconductors 44 (3), 366 (2010).

    Article  Google Scholar 

  9. C.-C. Liao, Sol. Energy Mater. Sol. Cells 99, 26 (2012).

    Article  Google Scholar 

  10. H. N. Cui, M. F. Costa, V. Teixeira, I. Porqueras, and E. Bertran, Surf. Sci. 532–535, 1127 (2003).

    Article  Google Scholar 

  11. A. Karuppasamy and A. Subrahmanyam, Thin Solid Films 516, 175 (2007).

    Article  Google Scholar 

  12. A. Karuppasamy and A. Subrahmanyam, J. Appl. Phys. 101, 113522 (2007).

    Article  Google Scholar 

  13. L. J. Berggren, C. Jonsson, and G. A. Niklasson, J. Appl. Phys. 102, 083538 (2007).

    Article  Google Scholar 

  14. C.-Y. Kim, S.-G. Cho, and T.-Y. Lim, Sol. Energy Mater. Sol. Cells 93, 2056 (2009).

    Article  Google Scholar 

  15. A. Subrahmanyam, C. S. Kumar, and K. M. Karuppasamy, Sol. Energy Mater. Sol. Cells 91, 62 (2007).

    Article  Google Scholar 

  16. J.-L. Chiang, S.-S. Jan, J.-C. Chou, and Y.-C. Chen, Sens. Actuators, B 76, 624 (2011).

    Article  Google Scholar 

  17. R.-H. Ma and Y.-C. Chen, Sensors 12, 359 (2012).

    Article  Google Scholar 

  18. S. H. N. Lim, J. Isidorsson, L. Sun, B. L. Kwak, and A. Anders, Sol. Energy Mater. Sol. Cells 108, 129 (2013).

    Article  Google Scholar 

  19. G. Leftheriotis, G. Syrrokostas, and P. Yianoulis, Sol. Energy Mater. Sol. Cells 94, 2304 (2010).

    Article  Google Scholar 

  20. S. N. Alamri, Sol. Energy Mater. Sol. Cells 93, 1657 (2009).

    Article  Google Scholar 

  21. M. Vasilopoulou, A. Botsialas, P. Argitis, G. Aspiotis, G. Papadimitropoulos, and D. Davazoglou, Phys. Status Solidi C 5, 3868 (2008).

    Article  Google Scholar 

  22. K. Tajima, Y. Yamada, S. Bao, M. Okada, and K. Yoshimura, Surf. Coat. Technol. 202, 5633 (2008).

    Article  Google Scholar 

  23. K. Tajima, Y. Yamada, S. Bao, M. Okada, and K. Yoshimura, Solid State Ionics 180, 654 (2009).

    Article  Google Scholar 

  24. K. Tajima, H. Hotta, Y. Yamada, M. Okada, and K. Yoshimura, Appl. Phys. Lett. 101, 251907 (2012).

    Article  Google Scholar 

  25. K. Tajima, Y. Yamada, S. Bao, M. Okada, and K. Yoshimura, Sol. Energy Mater. Sol. Cells 92, 120 (2008).

    Article  Google Scholar 

  26. M. Al-Kuhaili, A. Al-Aswad, S. Durrani, and I. Bakhtiari, Sol. Energy 86, 3183 (2012).

    Article  Google Scholar 

  27. D. S. Shang, L. Shi, J. R. Sun, B. G. Shen, F. Zhuge, R. W. Li, and Y. G. Zhao, Appl. Phys. Lett. 96, 072103 (2010).

    Article  Google Scholar 

  28. D. S. Shang, L. Shi, J.-R. Sun, and B.-G. Shen, J. Appl. Phys. 111, 053504 (2012).

    Article  Google Scholar 

  29. Y. Zhang, S.-H. Lee, A. Mascarenhas, and S. K. Deb, Appl. Phys. Lett. 93, 203508 (2008).

    Article  Google Scholar 

  30. A. A. Joraid, Appl. Phys. 9, 73 (2009).

    Google Scholar 

  31. J. H. Park, O. O. Park, and S. Kim, Appl. Phys. Lett. 89, 163106 (2006).

    Article  Google Scholar 

  32. S. Cwik, A. P. Milanov, V. Gwildies, T. B. Thiede, V. S. Vidyarthi, A. Savan, R. Meyer, H. W. Becker, D. Rogalla, A. Ludwig, R. A. Fischer, et al., ECS Trans. 28, 159 (2010).

    Article  Google Scholar 

  33. Y. A. Shaban and S. U. M. Khan, Int. J. Photoenergy, 749135 (2012). doi 10.1155/2012/749135

    Google Scholar 

  34. S. Biswas and J. Baeg, Int. J. Hydrogen Energy 38, 317 (2013).

    Google Scholar 

  35. Á. Valdés and G. Kroes, J. Chem. Phys. 130, 114701 (2009).

    Article  Google Scholar 

  36. C. Lai and S. Sreekantan, Mater. Sci. Semicond. Process. 16, 303 (2013).

    Article  Google Scholar 

  37. S. K. Biswas, J.-O. Baeg, S.-J. Moon, K.-J. Kong, and W.-W. So, J. Nanopart. Res. 14, 1 (2012).

    Article  Google Scholar 

  38. D.-S. Lee, K.-H. Nam, and D.-D. Lee, Thin Solid Films 375, 142 (2000).

    Article  Google Scholar 

  39. A. Mao, J. K. Kim, K. Shin, D. H. Wang, P. J. Yoo, G. Y. Han, and J. H. Park, J. Power Sources 210, 32 (2012).

    Article  Google Scholar 

  40. S. J. Hong, H. Jun, and J. S. Lee, Scr. Mater. 63, 757 (2010).

    Article  Google Scholar 

  41. W. J. Lee, P. S. Shinde, G. H. Go, and E. Ramasamy, Int. J. Hydrogen Energy 36, 5262 (2011).

    Article  Google Scholar 

  42. P. S. Shinde, G. G. Go, and W. J. Lee, Int. J. Energy Res. 37, 323 (2013).

    Article  Google Scholar 

  43. L. Meda, G. Tozzola, A. Tacca, G. Marra, S. Caramori, V. Cristino, and C. A. Bignozzi, Sol. Energy Mater. Sol. Cells 94, 788 (2010).

    Article  Google Scholar 

  44. A. I. Gavrilyuk, Sol. Energy Mater. Sol. Cells 94, 515 (2010).

    Article  Google Scholar 

  45. A. Memar, W. R. W. Daud, S. Hosseini, E. Eftekhari, and L. J. Minggu, Sol. Energy 84, 1538 (2010).

    Article  Google Scholar 

  46. K. Miecznikowski, P. J. Kulesza, and S. Fiechter, Appl. Surf. Sci. 257, 8215 (2011).

    Article  Google Scholar 

  47. J. W. J. Hamilton, J. A. Byrne, P. S. M. Dunlop, and N.M. D. Brown, Int. J. Photoenergy, 185479 (2008), doi 10.1155/2008/185479

    Google Scholar 

  48. K. Sivula, F. L. Formal, and M. Grätzel, Chem. Mater. 21, 2862 (2009).

    Article  Google Scholar 

  49. S. J. Hong, H. Jun, P. H. Borse, and J. S. Lee, Int. J. Hydrogen Energy 34, 3234 (2009).

    Article  Google Scholar 

  50. L. Fang, S. J. Baik, K. S. Lim, S. H. Yoo, M. S. Seo, S. J. Kang, and J. W. Seo, Appl. Phys. Lett. 96, 193501 (2010).

    Article  Google Scholar 

  51. C. Tao, S. Ruan, G. Xie, X. Kong, L. Shen, F. Meng, C. Liu, X. Zhang, W. Dong, and W. Chen, Appl. Phys. Lett. 94, 043311 (2009).

    Article  Google Scholar 

  52. Y. Saito, S. Uchida, T. Kubo, and H. Segawa, Thin Solid Films 518, 3033 (2010).

    Article  Google Scholar 

  53. A. Z. Sadek, H. Zheng, M. Breedon, V. Bansal, S. K. Bhargava, K. Latham, J. Zhu, L. Yu, Z. Hu, P. G. Spizzirri, W. Wlodarski, et al., Langmuir 25, 9545 (2009).

    Article  Google Scholar 

  54. P. Cheng, C. S. Deng, D. N. Liu, and X. M. Dai, Appl. Surf. Sci. 254, 3391 (2008).

    Article  Google Scholar 

  55. K.-W. Park, K.-S. Ahn, J.-H. Choi, Y.-C. Nah, Y.-M. Kim, and Y.-E. Sung, Appl. Phys. Lett. 81, 907 (2002).

    Article  Google Scholar 

  56. J. Zhao, A. V. Knotko, L. A. Frolova, and Yu. A. Dobrovolsky, Al’tern. Energ. Ekol., No. 8, 175 (2009).

    Google Scholar 

  57. B. Wickman, M. Wesselmark, C. Lagergren, and G. Lindbergh, Electrochim. Acta 56, 9496 (2011).

    Article  Google Scholar 

  58. M. Wesselmark, B. Wickman, C. Lagergren, and G. Lindbergh, Electrochim. Acta 55, 7590 (2010).

    Article  Google Scholar 

  59. S. Suzuki, T. Onodera, J. Kawaji, T. Mizukami, and K. Yamaga, Appl. Catal., A 427–428, 92 (2012).

    Article  Google Scholar 

  60. C.-H. Hsu, C.-C. Chang, K.-W. Yeh, Y.-R. Wu, C.-C. Chan, M.-J. Wang, M.-K. Wu, Thin Solid Films 520, 1470 (2011).

    Article  Google Scholar 

  61. T. Watanabe, S. Okazaki, H. Nakagawa, K. Murata, K. Fukuda, Sens. Actuators, B 145, 781 (2010).

    Article  Google Scholar 

  62. M. Ranjbar, N. T. Garavand, S. M. Mahdavi, and A. Irajizad, Sol. Energy Mater. Sol. Cells 94, 201 (2010).

    Article  Google Scholar 

  63. S. Songara, V. Gupta, M. K. Patra, J. Singh, L. Saini, G. S. Gowd, S. R. Vadera., and N. Kuma, J. Phys. Chem. Solids 73, 851 (2012).

    Article  Google Scholar 

  64. T. Hagizawa, T. Honma, Y. Kuroki, T. Okamoto, and M. Takata, Ceram. Int. 39, 2851 (2013).

    Article  Google Scholar 

  65. G. Leftheriotis, S. Papaefthimiou, P. Yianoulisa, and A. Siokoub, Thin Solid Films 384, 298 (2001).

    Article  Google Scholar 

  66. V. I. Shapovalov, A. E. Lapshin, A. E. Komlev, and A. A. Komlev, Techn. Phys. Lett. 38 (6), 555 (2012).

    Article  Google Scholar 

  67. S. J. Yoo, Y. H. Jung, J. W. Lim, H. G. Choi, D. K. Kim, and Y.-E. Sung, Sol. Energy Mater. Sol. Cells 92, 179 (2008).

    Article  Google Scholar 

  68. S. R. Bathe and P. S. Patil, Solid State Ionics 179, 314 (2008).

    Article  Google Scholar 

  69. G. Abadías, A. S. Gago, and N. Alonso-Vante, Surf. Coat. Technol. 205, 265 (2011).

    Article  Google Scholar 

  70. E. Broclawik, A. Góra, P. Liguzinski, P. Petelenz, and H. A. Witek, J. Chem. Phys. 124, 054709 (2006).

    Article  Google Scholar 

  71. E. Ozkan, S.-H. Lee, C. E. Tracy, and J. R. Pitts, Sol. Energy Mater. Sol. Cells 79, 439 (2003).

    Article  Google Scholar 

  72. A. I. Inamdar, Y. S. Kim, B. Jang, H. Im, W. Jung, D.-Y. Kim, and H. Kim, Thin Solid Films 520, 5367 (2012).

    Article  Google Scholar 

  73. A. Romanyuk and P. Oelhafen, Sol. Energy Mater. Sol. Cells 90, 1945 (2006).

    Article  Google Scholar 

  74. T. G. G. Maffeis, D. Yung, L. LePennec, M. W. Penny, R. J. Cobley, E. Comini, G. Sberveglieri, and S. P. Wilks, Surf. Sci. 601, 4953 (2007).

    Article  Google Scholar 

  75. T. G. G. Maffeis, M. W. Penny, R. J. Cobley, E. Comini, G. Sberveglieri, and S. P. Wilks, J. Surf. Sci. Nanotech. 7, 319 (2009).

    Article  Google Scholar 

  76. A. H. Jayatissa, S.-T. Cheng, and T. Gupta, Mater. Sci. Eng., B 109, 269 (2004).

    Article  Google Scholar 

  77. S. M. A. Durrani, E. E. Khawaja, M. A. Salim, M. F. Al-Kuhaili, and A. M. Al-Shukri, Sol. Energy Mater. Sol. Cells 71, 313 (2002).

  78. A. Siokou, G. Leftheriotis, S. Papaefthimiou, and P. Yianoulis, Surf. Sci. 482–485, 294 (2001).

    Article  Google Scholar 

  79. G. Leftheriotis, S. Papaefthimiou, P. Yianoulisa, and A. Siokou, Thin Solid Films 384, 298 (2001).

    Article  Google Scholar 

  80. V. I. Shapovalov, A. E. Lapshin, A. E. Komlev, M. U. Arsent’ev, and A. A. Komlev, Tech. Phys. 58 (9), 1313 (2013).

    Article  Google Scholar 

  81. A. E. Lapshin, V. I. Shapovalov, A. E. Komlev, M. Yu. Arsent’ev, A. A. Komlev, Glass Phys. Chem. 39 (5), 563 (2013).

    Article  Google Scholar 

  82. A. A. Barybin and V. I. Shapovalov, J. Appl. Phys. 101, 054905 (2007).

    Article  Google Scholar 

  83. A. E. Komlev, A. E. Lapshin, O. V. Magdysyuk, V. V. Plotnikov, V. I. Shapovalov, and N. S. Shutova, Techn. Phys. Lett. 36 (10), 942 (2010).

    Article  Google Scholar 

  84. K. M. Karuppasamy and A. Subrahmanyam, J. Phys. D: Appl. Phys. 42, 095301 (2009).

    Article  Google Scholar 

  85. A. Cremonesi, Y. Djaoued, D. Bersani, and P. P. Lottici, Thin Solid Films 516, 4128 (2008).

    Article  Google Scholar 

  86. S.-H. Lee, H. M. Cheong, P. Liu, D. Smith, C. E. Tracy, A. Mascarenhas, J. R. Pitts, and S. K. Deb, Electrochim. Acta 46, 1995 (2001).

    Article  Google Scholar 

  87. U. Balachandran and N. G. Eror, J. Solid State Chem. 42, 276 (1982).

    Article  Google Scholar 

  88. E. B. Santos, J. M. S. Silva, F. A. Sigoli, and I. O. Mazali, J. Nanopart. Res. 13, 5909 (2011).

    Article  Google Scholar 

  89. C. V. Ramana, S. Utsunomiya, R. C. Ewing, C. M. Julien, and U. Becker, J. Phys. Chem. B 110, 10430 (2006).

    Article  Google Scholar 

  90. E. Ozkan, S.-H. Lee, C. E. Tracy, and J. R. Pitts, Sol. Energy Mater. Sol. Cells 79, 439 (2003).

    Article  Google Scholar 

  91. A. D. Barros, K. F. Albertin, J. Miyoshi, I. Doi, and J. A. Diniz, Microelectron. Eng. 87, 443 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. I. Shapovalov.

Additional information

Original Russian Text © V.I. Shapovalov, A.E. Komlev, V.V. Vit’ko, A.V. Zav’yalov, A.E. Lapshin, S.A. Moshkalev, V.A. Ermakov, 2016, published in Poverkhnost’, 2016, No. 10, pp. 88–97.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shapovalov, V.I., Komlev, A.E., Vit’ko, V.V. et al. Influence of annealing on the optical properties and chemical and phase compositions of tungsten-oxide films. J. Surf. Investig. 10, 1077–1086 (2016). https://doi.org/10.1134/S1027451016040169

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016040169

Keywords

Navigation