Advertisement

Plasma sputtering of Pb1–x Eu x Te films with varied composition and structure

  • S. P. ZiminEmail author
  • I. I. Amirov
  • E. S. Gorlachev
  • V. V. Naumov
  • E. Abramof
  • P. H. O. Rappl
Article

Abstract

We investigate the sputtering of single-crystal and polycrystalline films of Pb1–x Eu x Te (x = 0.02–0.10) in high-frequency inductively coupled argon plasma. Layers of Pb1–x Eu x Te are grown via molecular beam epitaxy on barium-fluoride substrates of the (111) orientation at 340 and 200°C. For single-crystal films, the dependence of the sputtering rate on the europium concentration is found. For polycrystalline layers, a decrease in the sputtering rate is observed. This is caused by the effect of europium oxidation at the surface of the polycrystallites.

Keywords

lead chalcogenides molecular-beam epitaxy films high-frequency inductively coupled argon plasma plasma surface treatment 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. S. Zhukova, N. P. Aksenov, B. P. Gorshunov, et al., Phys. Solid State 53 (4), 810 (2011).CrossRefGoogle Scholar
  2. 2.
    D. A. Pashkeev and I. I. Zasavitskii, Semiconductors 47 (6), 755 (2013).CrossRefGoogle Scholar
  3. 3.
    M. Rahim, A. Khiar, F. Felder, et al., Appl. Phys. Lett. 94, 201112 (2009).CrossRefGoogle Scholar
  4. 4.
    G. Springholz, T. Schwarzl, M. Aigle, et al., Appl. Phys. Lett. 76, 1807 (2000).CrossRefGoogle Scholar
  5. 5.
    M. Böberl, T. Fromherz, J. Roither, et al., Appl. Phys. Lett. 88, 041105 (2006).CrossRefGoogle Scholar
  6. 6.
    T. Schwarzl, M. Eibelhuber, W. Heiss, et al., J. Appl. Phys. 101, 093102 (2007).CrossRefGoogle Scholar
  7. 7.
    M. L. Peres, H. S. Monteiro, V. A. Chitta, et al., J. Appl. Phys. 115, 093704 (2014).CrossRefGoogle Scholar
  8. 8.
    V. A. Chitta, W. Desrat, D. K. Maude, et al., Phys. E 34, 124 (2006).CrossRefGoogle Scholar
  9. 9.
    M. L. Peres, R. M. Rubinger, L. H. Ribeiro, et al., J. Appl. Phys. 111, 123708 (2012).CrossRefGoogle Scholar
  10. 10.
    P. H. O. Rappl, H. Closs, S. O. Ferreira, et al., J. Cryst. Growth 191, 466 (1998).CrossRefGoogle Scholar
  11. 11.
    J. A. H. Coaquira, V. A. Chitta, Jr. N. F. Oliveira, et al., J. Supercond. Novel Magn. 16, 115 (2003).CrossRefGoogle Scholar
  12. 12.
    S. P. Zimin, E. S. Gorlachev, I. I. Amirov, et al., Semicond. Sci. Technol. 26, 105003 (2011).CrossRefGoogle Scholar
  13. 13.
    I. I. Amirov, S. P. Zimin, E. S. Gorlachev, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6 (4), 643 (2012).CrossRefGoogle Scholar
  14. 14.
    S. P. Zimin, E. S. Gorlachev, I. I. Amirov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8 (3), 602 (2014).CrossRefGoogle Scholar
  15. 15.
    S. P. Zimin, E. S. Gorlachev, I. I. Amirov, et al., Semicond. Sci. Technol. 30, 035017 (2015).CrossRefGoogle Scholar
  16. 16.
    S. P. Zimin, E. S. Gorlachev, A. V. Baranov, et al., Opt. Spectrosc. 117, 748 (2014).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • S. P. Zimin
    • 1
    Email author
  • I. I. Amirov
    • 2
  • E. S. Gorlachev
    • 2
  • V. V. Naumov
    • 2
  • E. Abramof
    • 3
  • P. H. O. Rappl
    • 3
  1. 1.Demidov State UniversityYaroslavlRussia
  2. 2.Yaroslavl Branch, Institute of Physics and TechnologyRussian Academy of SciencesYaroslavlRussia
  3. 3.National Institute for Space ResearchSão José dos CamposBrazil

Personalised recommendations