Skip to main content
Log in

Classical molecular dynamics simulation of the interaction of hydrogen with defects in tungsten

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The interaction of interstitial hydrogen (H) with dislocations and point defects in tungsten (W) is studied via numerical simulation within the framework of classical molecular dynamics (MD). Two alternative models are considered to describe the interatomic interactions: the embedded-atom method (EAM) and the bond-saturation model (the bond-order potential (BOP)). The calculated results are compared with data obtained via ab initio quantum-mechanical simulation. The potential developed recently within the framework of the EAM model demonstrated better agreement with the ab initio results than the BOP one. Molecular- statics calculations showed that hydrogen atoms are attracted by the dislocation core in both cases of screw and edge dislocations. The classical MD simulation of hydrogen diffusion in the vicinity of the edge dislocation demonstrated one-dimensional migration along the dislocation line.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Springer Series in Chemical Physics, Vol. 78: Nuclear Fusion Research: Understanding Plasma-Surface Interactions, Ed. by R. E. Clark and D. H. Reiter (Berlin, Heidelberg, 2005).

    Google Scholar 

  2. G. Pintsuk, Compr. Nucl. Mater. 4, 551 (2012).

    Article  Google Scholar 

  3. Y. Zayachuk, M. H. J. Hoen, P. A. Z. Emmichoven, I. Uytdenhouwen, and G. van Oost, Nucl. Fusion 52, 103021 (2012).

    Article  Google Scholar 

  4. O. V. Ogorodnikova, J. Roth, and M. Mayer, J. Nucl. Mater. 313–316, 469 (2003).

    Article  Google Scholar 

  5. V. K. Alimov, B. Tyburska-Püschel, S. Lindig, Y. Hatano, M. Balden, J. Roth, K. Isobe, M. Matsuyama, and T. Yamanishi, J. Nucl. Mater. 420, 519 (2012).

    Article  Google Scholar 

  6. T. Ahlgren, K. Heinola, K. Vörtler, and J. Keinonen, J. Nucl. Mater. 427, 152 (2012).

    Article  Google Scholar 

  7. A. A. Haasz, J. W. Davis, M. Poon, and R. G. Macaulay-Newcombe, J. Nucl. Mater. 258–263, 889 (1998).

    Article  Google Scholar 

  8. G.-H. Lu, H.-B. Zhou, and C. S. Becquart, Nucl. Fusion 54, 086001 (2014).

    Article  Google Scholar 

  9. P. Yu. Grigor’ev, V. I. Dubinko, D. A. Terent’ev, A. V. Bakaev, and E. E. Zhurkin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 234 (2014).

    Article  Google Scholar 

  10. D. Terentyev, V. Dubinko, A. Bakaev, Y. Zayachuk, W. V. Renterghem, and P. Grigorev, Nucl. Fusion 54, 042004 (2014).

    Article  Google Scholar 

  11. V. I. Dubinko, P. Grigorev, A. Bakaev, D. Terentyev, G. van Oost, F. Gao, D. van Neck, and E. E. Zhurkin, J. Phys.: Condens. Matter 26, 395001 (2014).

    Google Scholar 

  12. P. Grigorev, D. Terentyev, V. Dubinko, G. Bonny, G. Van Oost, J.-M. Noterdaeme, E. E. Zhurkin, Nucl. Instrum. Methods Phys. Res., Sect. B 352, 96 (2015).

    Article  Google Scholar 

  13. X.-C. Li, X. Shu, Y.-N. Liu, Y. Yu, F. Gao, and G.-H. Lu, J. Nucl. Mater. 426, 31 (2012).

    Article  Google Scholar 

  14. X.-C. Li, X. Shu, Y.-N. Liu, F. Gao, and G.-H. Lu, J. Nucl. Mater. 408, 12 (2011).

    Article  Google Scholar 

  15. G. Bonny, P. Grigorev, and D. Terentyev, J. Phys.: Condens. Matter 26, 485001 (2014).

    Google Scholar 

  16. M.-C. Marinica, L. Ventelon, M. R. Gilbert, L. Proville, S. L. Dudarev, J. Marian, G. Bencteux, and F. Willaime, J. Phys.: Condens. Matter 25, 395502 (2013).

    Google Scholar 

  17. G. Bonny, D. Terentyev, A. Bakaev, P. Grigorev, and D. van Neck, Modell. Simul. Mater. Sci. Eng. 22, 053001 (2014).

    Article  Google Scholar 

  18. K. Heinola, T. Ahlgren, K. Nordlund, and J. Keinonen, Phys. Rev. B: Condens. Matter Mater. Phys. 82, 094102 (2010).

    Article  Google Scholar 

  19. S. Plimpton, J. Comput. Phys. 117, 1 (1995).

    Article  Google Scholar 

  20. A. M. Orlov, Introduction to the Theory of Crystal Defects (Vysshaya shkola, Moscow, 1983) [in Russian].

    Google Scholar 

  21. V. Vitek, R. Perrin, and D. Bowen, Philos. Mag. 21, 1049 (1970).

    Article  Google Scholar 

  22. L. Romaner, C. Ambrosch-Draxl, and R. Pippan, Phys. Rev. Lett. 104, 195503 (2010).

    Article  Google Scholar 

  23. H. Li, S. Wurster, C. Motz, L. Romaner, C. Ambrosch-Draxl, and R. Pippan, Acta Mater. 60 748 (2012).

    Article  Google Scholar 

  24. G. D. Samolyuk, Y. N. Osetsky, and R. E. Stoller, J. Phys.: Condens. Matter 25, 025403 (2013).

    Google Scholar 

  25. S. L. Frederiksen and K. W. Jacobsen, Philos. Mag. 83, 365 (2003).

    Article  Google Scholar 

  26. R. Frauenfelder, J. Vac. Sci. Technol. 6, 388 (1969).

    Article  Google Scholar 

  27. V. Nemanic, B. Zajec, D. Dellasega, and M. Passoni, J. Nucl. Mater. 429, 92 (2012).

    Article  Google Scholar 

  28. C. S. Becquart and C. Domain, J. Nucl. Mater. 386–388, 109 (2009).

    Article  Google Scholar 

  29. D. F. Johnson and E. A. Carter, J. Mater. Res. 25, 315 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. E. Zhurkin.

Additional information

Original Russian Text © P.Yu. Grigorev, D.A. Terentyev, A.V. Bakaev, E.E. Zhurkin, 2016, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2016, No. 4, pp. 36–44.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Grigorev, P.Y., Terentyev, D.A., Bakaev, A.V. et al. Classical molecular dynamics simulation of the interaction of hydrogen with defects in tungsten. J. Surf. Investig. 10, 398–405 (2016). https://doi.org/10.1134/S1027451016020269

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016020269

Keywords

Navigation