Skip to main content

AFM study of thin films of oligopeptide L-valyl-L-valine before and after interaction with vapors

Abstract

The effect of the substrate type, ambient relative humidity, water vapor and vapors of organic compounds on the surface morphology of films based on dipeptide L-valyl-L-valine are studied using atomicforce microscopy. It is found that at a low relative humidity the dipeptide is crystallized on a hydrophobic substrate with the formation of pyramidal structures, while at a high relative humidity hollow truncated cones are observed. A dipeptide film coated with irregularly shaped objects is observed on hydrophilic substrates. After saturation of the L-valyl-L-valine film with the vapors of proton-donor solvents the formation of new objects on its surface or the destruction of initial objects can occur, while water vapor does not affect the surface morphology. For proton acceptors the major factor affecting the surface morphology of dipeptide film is their energy of the hydrogen bond with proton donors. It is shown that the effect of organic vapors on the film morphology depends on the substrate type.

This is a preview of subscription content, access via your institution.

References

  1. P. S. Goh and A. F. Ismail, Desalination 356, 115 (2015).

    Article  Google Scholar 

  2. Z. Fan, X. Huang, C. Tan, and H. Zhang, Chem. Sci. 6, 95 (2015).

    Article  Google Scholar 

  3. E. Busseron, Y. Ruff, E. Moulin, and N. Giuseppone, Nanoscale 5, 7098 (2013).

    Article  Google Scholar 

  4. D. T. Bong, T. D. Clark, J. R. Granja, and M. R. Ghadiri, Angew. Chem., Int. Ed. Engl. 40, 988 (2001).

    Article  Google Scholar 

  5. E. Gazit, Chem. Soc. Rev. 36, 1263 (2007).

    Article  Google Scholar 

  6. R. G. Ellis-Behnke, Yu-X. Liang, Si-W. You, D. K. C. Tay, S. Zhang, K.-F. So, and G. E. Schneider, Proc. Natl. Acad. Sci. 103, 5054 (2006).

    Article  Google Scholar 

  7. J. S. Lee, I. Yoon, J. Kim, H. Ihee, B. Kim, and C. B. Park, Angew. Chem., Int. Ed. Engl. 50, 1164 (2011).

    Article  Google Scholar 

  8. J. H. Kim, J. Ryu, and C. B. Park, Small 7, 718 (2011).

    Article  Google Scholar 

  9. J. Ryu and C. B. Park, Biotechnol. Bioeng. 105, 221 (2010).

    Article  Google Scholar 

  10. M. Reches and E. Gazit, Science 300, 625 (2003).

    Article  Google Scholar 

  11. J. Ryu, S.-W. Kim, K. Kang, and C. B. Park, ACS Nano 4, 159 (2010).

    Article  Google Scholar 

  12. L. Adler-Abramovich, N. Kol, I. Yanai, D. Barlam, R. Z. Shneck, E. Gazit, and I. Rousso, Angew. Chem., Int. Ed. Engl. 49, 9939 (2010).

    Article  Google Scholar 

  13. W. Hamley, Angew. Chem., Int. Ed. Engl. 42, 1692 (2003).

    Article  Google Scholar 

  14. P. A. Wright, Science 329, 1025 (2010).

    Article  Google Scholar 

  15. C. H. Görbitz, Chem.-Eur. J. 13, 1022 (2007).

    Article  Google Scholar 

  16. C. H. Görbitz and F. Rise, J. Pept. Sci. 14, 210 (2008).

    Article  Google Scholar 

  17. J. S. Lee, J. Ryu, and C. B. Park, Soft Matter 5, 2717 (2009).

    Article  Google Scholar 

  18. M. A. Ziganshin, I. G. Efimova, V. V. Gorbatchuk, S. A. Ziganshina, A. P. Chuklanov, A. A. Bukharaev, and D. V. Soldatov, J. Pept. Sci. 18, 209 (2012).

    Article  Google Scholar 

  19. M. A. Ziganshin, I. G. Efimova, A. A. Bikmukhametova, V. V. Gorbachuk, S. A. Ziganshina, A. P. Chuklanov, and A. A. Bukharaev, Prot. Met. Phys. Chem. Surf. 49, 274 (2013).

    Article  Google Scholar 

  20. M. A. Ziganshin, A. A. Bikmukhametova, A. V. Gerasimov, V. V. Gorbachuk, S. A. Ziganshina, and A. A. Bukharaev, Prot. Met. Phys. Chem. Surf. 50, 49 (2014).

    Article  Google Scholar 

  21. P. Tamamis, L. A. Abramovich, M. Reches, K. Marshall, P. Sikorski, L. Serpell, E. Gazit, and G. Archontis, Biophys. J. 96, 5020 (2009).

    Article  Google Scholar 

  22. A. Dutta, A. Dutt, M. G. B. Drew, and A. Pramanik, Supramol. Chem. 20, 625 (2008).

    Article  Google Scholar 

  23. X. Yan, Q. He, K. Wang, L. Duan, Y. Cui, and J. Li, Angew. Chem., Int. Ed. Engl. 46, 2431 (2007).

    Article  Google Scholar 

  24. X. Yan, Y. Cui, Q. He, K. Wang, J. Li, W. Mu, B. Wang, and Z.-C. Ou-yang, Chem.-Eur. J. 14, 5974 (2008).

    Article  Google Scholar 

  25. R. J. A. Hill, V. L. Sedman, S. Allen, P. M. Williams, M. Paoli, L. Adler-Abramovich, E. Gazit, L. Eaves, and S. J. B. Tendler, Adv. Mater. 19, 4474 (2007).

    Article  Google Scholar 

  26. D. V. Soldatov, I. L. Moudrakovski, E. V. Grachev, and J. A. Ripmeester, J. Am. Chem. Soc. 128, 6737 (2006).

    Article  Google Scholar 

  27. C. H. Görbitz, New J. Chem. 27, 1789 (2003).

    Article  Google Scholar 

  28. W. L. F. Armarego and C. L. L. Chai, Purification of Laboratory Chemicals, 6th ed. (Butterworth-Heinemann, Oxford, 2009).

    Google Scholar 

  29. L. S. Yakimova, M. A. Ziganshin, V. A. Sidorov, V. V. Kovalev, E. A. Shokova, V. A. Tafeenko, and V. V. Gorbatchuk, J. Phys. Chem. B 112, 15569 (2008).

    Article  Google Scholar 

  30. B. N. Solomonov, V. B. Novikov, M. A. Varfolomeev, and N. M. Mileshko, Phys. Org. Chem. 18, 49 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. Ziganshin.

Additional information

Original Russian Text © M.A. Ziganshin, N.S. Gubina, V.V. Gorbatchuk, S.A. Ziganshina, A.P. Chuklanov, D.A. Bizyaev, A.A. Bukharaev, 2016, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2016, No. 2, pp. 55–61.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ziganshin, M.A., Gubina, N.S., Gorbatchuk, V.V. et al. AFM study of thin films of oligopeptide L-valyl-L-valine before and after interaction with vapors. J. Synch. Investig. 10, 210–216 (2016). https://doi.org/10.1134/S1027451016010377

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016010377

Keywords

  • oligopeptide L-valyl-L-valine
  • processing in vapors of organic compounds
  • film morphology
  • atomic-force microscopy