Skip to main content

Mesostructure of yttrium and aluminum basic salts coprecipitated from aqueous solutions under ultrasonic treatment

Abstract

The influence of ultrasonic treatment on the micro- and mesostructures and fractal characteristics of amorphous powders of yttrium and aluminum basic salts (precursors for the synthesis of neodymium-activated yttrium–aluminum garnet, Nd:YAG, which were coprecipitated from aqueous solutions by different precipitants, namely, aqueous solutions of ammonia and ammonium bicarbonate) is studied. It is established that ultrasonication applied during the precipitation of the aforementioned powders does not significantly change the structure of the obtained materials but always leads to the formation of structures with a less homogeneous nuclear density, i.e., a more developed surface area. Moreover, the ultrasound-assisted precipitation of the hydroxocompounds by ammonium hydrocarbonate results in a certain increase in the surface fractal dimension and the degree of aggregation for mass-fractal aggregates of particles.

This is a preview of subscription content, access via your institution.

References

  1. J. Sanghera, B. Shaw, and W. Kim, Proc. SPIE—Int. Soc. Opt. Eng. 7912, 79121Q–1 (2011).

    Google Scholar 

  2. P. P. Fedorov, in Handbook on Solid-State Lasers: Materials, Systems and Applications, Ed. by B. Denker and E. Shklovsky (Woodhead, Oxford, Cambridge, Philadelphia, New Delhi, 2013), p. 82.

  3. M. E. Doroshenko, A. A. Demidenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, H. Jelinkova, V. A. Konyshkin, M. A. Krutov, S. V. Kuznetsov, V. V. Osiko, P. A. Popov, and J. Shulc, Phys. Status Solidi C 10, 952 (2013).

    Article  Google Scholar 

  4. A. Ikesue and K. Yoshida, J. Mater. Sci. 34, 1189 (1999).

    Article  Google Scholar 

  5. J. Lu, K. Ueda, and H. Yagi, J. Alloys Compd. 341, 220 (2002).

    Article  Google Scholar 

  6. A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, Crystallogr. Rep. 50, 869 (2005).

    Article  Google Scholar 

  7. V. B. Kravchenko and Yu. L. Kopylov, Phys. Status Solidi A 204, 2411 (2007).

    Article  Google Scholar 

  8. A. Ya. Neiman, E. V. Tkachenko, and L. A. Kvichko, Zh. Neorg. Khim. 25, 2340 (1980).

    Google Scholar 

  9. V. B. Glushkova, O. N. Egorova, and V. A. Krzhizhanovskaya, Izv. Akad. Nauk SSSR, Neorg. Mater. 19, 95 (1983).

    Google Scholar 

  10. X. Y. Chen, L. Yang, and R. E. Cook, Nanotecnology 14, 670 (2003).

    Article  Google Scholar 

  11. J. G. Li, T. Ikegami, and J. H. Lee, J. Eur. Ceram. Soc. 20, 2395 (2000).

    Article  Google Scholar 

  12. E. Caponetti, S. Enzo, and B. Lasio, Opt. Mater. 29, 1240 (2007).

    Article  Google Scholar 

  13. T. Chudoba, M. Teyssier, and W. Lojkowski, Solid State Phenom. 128, 41 (2007).

    Article  Google Scholar 

  14. J. G. Li, T. Ikegami, and J. H. Lee, J. Mater. Res. 15, 2375 (2000).

    Article  Google Scholar 

  15. C.-C. Chiang, M.-S. Tsai, and M.-H. Hon, J. Electrochem. Soc. 154, 326 (2007).

    Article  Google Scholar 

  16. V. A. Maslov, V. V. Voronov, R. P. Ermakov, V. V. Shcherbakov, V. A. Usachev, N. E. Kononenko, and P. P. Fedorov, Vestn. MGTU, Ser. Priborostroen., Spets. Vyp. Radioopt. Tekhnol. Priborostroen., 20 (2012).

    Google Scholar 

  17. P. E. Meskin, A. E. Baranchikov, V. K. Ivanov, E. V. Kisterev, A. A. Burukhin, B. R. Churagulov, N. N. Oleinikov, Sh. Komarneni, and Yu. D. Tretyakov, Dokl. Chem. 389, 62 (2003).

    Article  Google Scholar 

  18. P. E. Meskin, F. Yu. Sharikov, V. K. Ivanov, B. R. Churagulov, and Yu. D. Tretyakov, Mater. Chem. Phys. 104, 439 (2007).

    Article  Google Scholar 

  19. P. E. Meskin, A. E. Baranchikov, V. K. Ivanov, D. R. Afanas’ev, A. I. Gavrilov, B. R. Churagulov, and N. N. Oleinikov, Inorg. Mater. 40, 1058 (2004).

    Article  Google Scholar 

  20. P. E. Meskin, A. I. Gavrilov, V. D. Maksimov, V. K. Ivanov, and B. R. Churagulov, Russ. J. Inorg. Chem. 52, 1648 (2007).

    Article  Google Scholar 

  21. A. Ye. Baranchikov, V. K. Ivanov, and Yu. D. Tretyakov, Ultrason. Sonochem. 14, 131 (2007).

    Article  Google Scholar 

  22. A. E. Baranchikov, V. K. Ivanov, N. N. Oleinikov, and Yu. D. Tretyakov, Inorg. Mater. 40, 1091 (2004).

    Article  Google Scholar 

  23. A. E. Baranchikov, V. K. Ivanov, A. N. Baranov, N. N. Oleinikov, and Yu. D. Tretyakov, Russ. J. Inorg. Chem. 46, 1874 (2001).

    Google Scholar 

  24. A. Radulescu, E. Kentzinger, J. Stellbrink, et al., Neutron News 16, 7 (2005).

    Article  Google Scholar 

  25. G. Goerigk and Z. Varga, J. Appl. Crystallogr. 44, 337 (2011).

    Article  Google Scholar 

  26. G. D. Wignall and F. S. Bates, J. Appl. Crystallogr. 20, 28 (1987).

    Article  Google Scholar 

  27. www.iff.kfa-juelich.de/~pipich/dokuwiki/doku.php/qtikws

  28. W. Schmatz, T. Springer, J. Schelten, and K. Ibel, J. Appl. Crystallogr. 7, 96 (1974).

    Article  Google Scholar 

  29. C. E. Holcombe, J. Am. Ceram. Soc. 61, 481 (1978).

    Article  Google Scholar 

  30. M. D. Rasmussen, M. Akinc, and O. Hunter, Ceram. Int. 11, 51 (1985).

    Article  Google Scholar 

  31. E. A. Frolova, D. F. Kondakov, A. D. Yapryntsev, A. E. Baranchikov, V. K. Ivanov, and V. P. Danilov, Russ. J. Inorg. Chem. 60, 259 (2015).

    Article  Google Scholar 

  32. A. D. Yapryntsev, A. E. Baranchikov, A. V. Zabolotskaya, L. P. Borilo, and V. K. Ivanov, Russ. J. Inorg. Chem. 59, 1383 (2014).

    Article  Google Scholar 

  33. A. D. Yaprynsev, A. E. Baranchikov, L. S. Skogareva, A. E. Goldt, I. P. Stolyarov, O. S. Ivanova, V. V. Kozik, and V. K. Ivanov, CrystEngComm 17, 2667 (2015).

    Article  Google Scholar 

  34. A. E. Baranchikov, A. D. Yapryntsev, A. E. Goldt, and V. K. Ivanov, Curr. Microwave Chem. 3, 3 (2015).

    Article  Google Scholar 

  35. V. Petrícek, M. Dušek, and L. Palatinus, Z. Kristallogr. 229, 345 (2014).

    Google Scholar 

  36. R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).

    Article  Google Scholar 

  37. A. D. Yapryntsev, A. E. Baranchikov, N. N. Gubanova, V. K. Ivanov, and Yu. D. Tretyakov, Inorg. Mater. 48, 494 (2012).

    Article  Google Scholar 

  38. K. Hayashi, S. Toyoda, H. Takebe, and K. Morinaga, J. Ceram. Soc. Jpn. 99, 550 (1991).

    Article  Google Scholar 

  39. E. L. Head and C. E. Holly, Rare Earth Research, Ed. by L. Eyring (Gordon and Breach, New York, 1965), Vol. 3, p. 707.

  40. H. D. Bale and P. W. Schmidt, Phys. Rev. Lett. 38, 596 (1984).

    Article  Google Scholar 

  41. A. Guinier, G. Fournet, C. B. Walker, and K. L. Yudowitch, Small Angle Scattering of X-Rays (Wiley, New York, 1955), p. 17.

    Google Scholar 

  42. G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995).

    Article  Google Scholar 

  43. S. V. Maleyev, Phys. Rev. B 52, 13163 (1995).

    Article  Google Scholar 

  44. V. K. Ivanov, G. P. Kopitsa, A. Ye. Baranchikov, M. Sharp, K. Pranzas, and S. V. Grigoriev, Russ. J. Inorg. Chem. 54, 2091 (2009).

    Article  Google Scholar 

  45. G. P. Kopitsa, A. E. Baranchikov, O. S. Ivanova, A. D. Yapryntsev, S. V. Grigoriev, P. K. Pranzas, and V. K. Ivanov, J. Phys.: Conf. Ser. 340, 012057 (2012).

    Google Scholar 

  46. N. N. Gubanova, A. Ye. Baranchikov, G. P. Kopitsa, L. Almásy, B. Angelov, A. D. Yapryntsev, L. Rosta, and V. K. Ivanov, Ultrason. Sonochem. 24, 230 (2015).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. D. Yapryntsev.

Additional information

Original Russian Text © A.D. Yapryntsev, N.N. Gubanova, G.P. Kopitsa, A.Ye. Baranchikov, S.V. Kuznetsov, P.P. Fedorov, V.K. Ivanov, K.V. Ezdakova, V. Pipich, 2016, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2016, No. 2, pp. 24–34.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yapryntsev, A.D., Gubanova, N.N., Kopitsa, G.P. et al. Mesostructure of yttrium and aluminum basic salts coprecipitated from aqueous solutions under ultrasonic treatment. J. Synch. Investig. 10, 177–186 (2016). https://doi.org/10.1134/S1027451016010365

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016010365

Keywords

  • ultrasonic treatment
  • ultrasmall-angle neutron scattering
  • fractal dimension
  • mesostructure
  • yttrium-aluminum garnet