Advertisement

Mesostructure of yttrium and aluminum basic salts coprecipitated from aqueous solutions under ultrasonic treatment

  • A. D. YapryntsevEmail author
  • N. N. Gubanova
  • G. P. Kopitsa
  • A. Ye. Baranchikov
  • S. V. Kuznetsov
  • P. P. Fedorov
  • V. K. Ivanov
  • K. V. Ezdakova
  • V. Pipich
Article
  • 31 Downloads

Abstract

The influence of ultrasonic treatment on the micro- and mesostructures and fractal characteristics of amorphous powders of yttrium and aluminum basic salts (precursors for the synthesis of neodymium-activated yttrium–aluminum garnet, Nd:YAG, which were coprecipitated from aqueous solutions by different precipitants, namely, aqueous solutions of ammonia and ammonium bicarbonate) is studied. It is established that ultrasonication applied during the precipitation of the aforementioned powders does not significantly change the structure of the obtained materials but always leads to the formation of structures with a less homogeneous nuclear density, i.e., a more developed surface area. Moreover, the ultrasound-assisted precipitation of the hydroxocompounds by ammonium hydrocarbonate results in a certain increase in the surface fractal dimension and the degree of aggregation for mass-fractal aggregates of particles.

Keywords

ultrasonic treatment ultrasmall-angle neutron scattering fractal dimension mesostructure yttrium-aluminum garnet 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Sanghera, B. Shaw, and W. Kim, Proc. SPIE—Int. Soc. Opt. Eng. 7912, 79121Q–1 (2011).Google Scholar
  2. 2.
    P. P. Fedorov, in Handbook on Solid-State Lasers: Materials, Systems and Applications, Ed. by B. Denker and E. Shklovsky (Woodhead, Oxford, Cambridge, Philadelphia, New Delhi, 2013), p. 82.Google Scholar
  3. 3.
    M. E. Doroshenko, A. A. Demidenko, P. P. Fedorov, E. A. Garibin, P. E. Gusev, H. Jelinkova, V. A. Konyshkin, M. A. Krutov, S. V. Kuznetsov, V. V. Osiko, P. A. Popov, and J. Shulc, Phys. Status Solidi C 10, 952 (2013).CrossRefGoogle Scholar
  4. 4.
    A. Ikesue and K. Yoshida, J. Mater. Sci. 34, 1189 (1999).CrossRefGoogle Scholar
  5. 5.
    J. Lu, K. Ueda, and H. Yagi, J. Alloys Compd. 341, 220 (2002).CrossRefGoogle Scholar
  6. 6.
    A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, K. Takaichi, A. Shirakava, H. Yagi, T. Yanagitani, and K. Ueda, Crystallogr. Rep. 50, 869 (2005).CrossRefGoogle Scholar
  7. 7.
    V. B. Kravchenko and Yu. L. Kopylov, Phys. Status Solidi A 204, 2411 (2007).CrossRefGoogle Scholar
  8. 8.
    A. Ya. Neiman, E. V. Tkachenko, and L. A. Kvichko, Zh. Neorg. Khim. 25, 2340 (1980).Google Scholar
  9. 9.
    V. B. Glushkova, O. N. Egorova, and V. A. Krzhizhanovskaya, Izv. Akad. Nauk SSSR, Neorg. Mater. 19, 95 (1983).Google Scholar
  10. 10.
    X. Y. Chen, L. Yang, and R. E. Cook, Nanotecnology 14, 670 (2003).CrossRefGoogle Scholar
  11. 11.
    J. G. Li, T. Ikegami, and J. H. Lee, J. Eur. Ceram. Soc. 20, 2395 (2000).CrossRefGoogle Scholar
  12. 12.
    E. Caponetti, S. Enzo, and B. Lasio, Opt. Mater. 29, 1240 (2007).CrossRefGoogle Scholar
  13. 13.
    T. Chudoba, M. Teyssier, and W. Lojkowski, Solid State Phenom. 128, 41 (2007).CrossRefGoogle Scholar
  14. 14.
    J. G. Li, T. Ikegami, and J. H. Lee, J. Mater. Res. 15, 2375 (2000).CrossRefGoogle Scholar
  15. 15.
    C.-C. Chiang, M.-S. Tsai, and M.-H. Hon, J. Electrochem. Soc. 154, 326 (2007).CrossRefGoogle Scholar
  16. 16.
    V. A. Maslov, V. V. Voronov, R. P. Ermakov, V. V. Shcherbakov, V. A. Usachev, N. E. Kononenko, and P. P. Fedorov, Vestn. MGTU, Ser. Priborostroen., Spets. Vyp. Radioopt. Tekhnol. Priborostroen., 20 (2012).Google Scholar
  17. 17.
    P. E. Meskin, A. E. Baranchikov, V. K. Ivanov, E. V. Kisterev, A. A. Burukhin, B. R. Churagulov, N. N. Oleinikov, Sh. Komarneni, and Yu. D. Tretyakov, Dokl. Chem. 389, 62 (2003).CrossRefGoogle Scholar
  18. 18.
    P. E. Meskin, F. Yu. Sharikov, V. K. Ivanov, B. R. Churagulov, and Yu. D. Tretyakov, Mater. Chem. Phys. 104, 439 (2007).CrossRefGoogle Scholar
  19. 19.
    P. E. Meskin, A. E. Baranchikov, V. K. Ivanov, D. R. Afanas’ev, A. I. Gavrilov, B. R. Churagulov, and N. N. Oleinikov, Inorg. Mater. 40, 1058 (2004).CrossRefGoogle Scholar
  20. 20.
    P. E. Meskin, A. I. Gavrilov, V. D. Maksimov, V. K. Ivanov, and B. R. Churagulov, Russ. J. Inorg. Chem. 52, 1648 (2007).CrossRefGoogle Scholar
  21. 21.
    A. Ye. Baranchikov, V. K. Ivanov, and Yu. D. Tretyakov, Ultrason. Sonochem. 14, 131 (2007).CrossRefGoogle Scholar
  22. 22.
    A. E. Baranchikov, V. K. Ivanov, N. N. Oleinikov, and Yu. D. Tretyakov, Inorg. Mater. 40, 1091 (2004).CrossRefGoogle Scholar
  23. 23.
    A. E. Baranchikov, V. K. Ivanov, A. N. Baranov, N. N. Oleinikov, and Yu. D. Tretyakov, Russ. J. Inorg. Chem. 46, 1874 (2001).Google Scholar
  24. 24.
    A. Radulescu, E. Kentzinger, J. Stellbrink, et al., Neutron News 16, 7 (2005).CrossRefGoogle Scholar
  25. 25.
    G. Goerigk and Z. Varga, J. Appl. Crystallogr. 44, 337 (2011).CrossRefGoogle Scholar
  26. 26.
    G. D. Wignall and F. S. Bates, J. Appl. Crystallogr. 20, 28 (1987).CrossRefGoogle Scholar
  27. 27.
    www.iff.kfa-juelich.de/~pipich/dokuwiki/doku.php/qtikwsGoogle Scholar
  28. 28.
    W. Schmatz, T. Springer, J. Schelten, and K. Ibel, J. Appl. Crystallogr. 7, 96 (1974).CrossRefGoogle Scholar
  29. 29.
    C. E. Holcombe, J. Am. Ceram. Soc. 61, 481 (1978).CrossRefGoogle Scholar
  30. 30.
    M. D. Rasmussen, M. Akinc, and O. Hunter, Ceram. Int. 11, 51 (1985).CrossRefGoogle Scholar
  31. 31.
    E. A. Frolova, D. F. Kondakov, A. D. Yapryntsev, A. E. Baranchikov, V. K. Ivanov, and V. P. Danilov, Russ. J. Inorg. Chem. 60, 259 (2015).CrossRefGoogle Scholar
  32. 32.
    A. D. Yapryntsev, A. E. Baranchikov, A. V. Zabolotskaya, L. P. Borilo, and V. K. Ivanov, Russ. J. Inorg. Chem. 59, 1383 (2014).CrossRefGoogle Scholar
  33. 33.
    A. D. Yaprynsev, A. E. Baranchikov, L. S. Skogareva, A. E. Goldt, I. P. Stolyarov, O. S. Ivanova, V. V. Kozik, and V. K. Ivanov, CrystEngComm 17, 2667 (2015).CrossRefGoogle Scholar
  34. 34.
    A. E. Baranchikov, A. D. Yapryntsev, A. E. Goldt, and V. K. Ivanov, Curr. Microwave Chem. 3, 3 (2015).CrossRefGoogle Scholar
  35. 35.
    V. Petrícek, M. Dušek, and L. Palatinus, Z. Kristallogr. 229, 345 (2014).Google Scholar
  36. 36.
    R. D. Shannon, Acta Crystallogr. A 32, 751 (1976).CrossRefGoogle Scholar
  37. 37.
    A. D. Yapryntsev, A. E. Baranchikov, N. N. Gubanova, V. K. Ivanov, and Yu. D. Tretyakov, Inorg. Mater. 48, 494 (2012).CrossRefGoogle Scholar
  38. 38.
    K. Hayashi, S. Toyoda, H. Takebe, and K. Morinaga, J. Ceram. Soc. Jpn. 99, 550 (1991).CrossRefGoogle Scholar
  39. 39.
    E. L. Head and C. E. Holly, Rare Earth Research, Ed. by L. Eyring (Gordon and Breach, New York, 1965), Vol. 3, p. 707.Google Scholar
  40. 40.
    H. D. Bale and P. W. Schmidt, Phys. Rev. Lett. 38, 596 (1984).CrossRefGoogle Scholar
  41. 41.
    A. Guinier, G. Fournet, C. B. Walker, and K. L. Yudowitch, Small Angle Scattering of X-Rays (Wiley, New York, 1955), p. 17.Google Scholar
  42. 42.
    G. Beaucage, J. Appl. Crystallogr. 28, 717 (1995).CrossRefGoogle Scholar
  43. 43.
    S. V. Maleyev, Phys. Rev. B 52, 13163 (1995).CrossRefGoogle Scholar
  44. 44.
    V. K. Ivanov, G. P. Kopitsa, A. Ye. Baranchikov, M. Sharp, K. Pranzas, and S. V. Grigoriev, Russ. J. Inorg. Chem. 54, 2091 (2009).CrossRefGoogle Scholar
  45. 45.
    G. P. Kopitsa, A. E. Baranchikov, O. S. Ivanova, A. D. Yapryntsev, S. V. Grigoriev, P. K. Pranzas, and V. K. Ivanov, J. Phys.: Conf. Ser. 340, 012057 (2012).Google Scholar
  46. 46.
    N. N. Gubanova, A. Ye. Baranchikov, G. P. Kopitsa, L. Almásy, B. Angelov, A. D. Yapryntsev, L. Rosta, and V. K. Ivanov, Ultrason. Sonochem. 24, 230 (2015).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2016

Authors and Affiliations

  • A. D. Yapryntsev
    • 1
    • 4
    Email author
  • N. N. Gubanova
    • 2
    • 3
  • G. P. Kopitsa
    • 2
    • 3
  • A. Ye. Baranchikov
    • 4
  • S. V. Kuznetsov
    • 5
  • P. P. Fedorov
    • 5
  • V. K. Ivanov
    • 4
    • 6
  • K. V. Ezdakova
    • 2
  • V. Pipich
    • 7
  1. 1.Moscow State UniversityMoscowRussia
  2. 2.Konstantinov Petersburg Nuclear Physics InstituteNational Research Centre “Kurchatov Institute”GatchinaRussia
  3. 3.Institute of Silicate ChemistryRussian Academy of SciencesSt. PetersburgRussia
  4. 4.Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussia
  5. 5.Prokhorov General Physics InstituteRussian Academy of SciencesMoscowRussia
  6. 6.National Research Tomsk State UniversityTomskRussia
  7. 7.JCNS, Forschungszentrum Juelich GmbH, Outstation at MLZGarchingGermany

Personalised recommendations