Skip to main content

Temperature behavior of the local magnetization vectors in ferromagnetic inverted opal-like structures

Abstract

The behavior of magnetization in films of ferromagnetic inverted opal-like nanostructures based on cobalt and nickel is studied. The remagnetization curves M(H) and temperature dependences M(T) in the ranges of H from–50000 to +50000 Oe and T = 5–350 K are measured by magnetometry using a superconducting quantum interference device (SQUID-magnetometry). It is demonstrated that at T > 70 K, the total magnetization of the inverted nanostructures is composed of four local magnetizations, the vectors of which are oriented along the 〈111〉 anisotropy axes of a spatial opal-like structure. At low temperatures, the anisotropy of the film is found to make an additional significant contribution. The critical magnetic fields corresponding to reorientation of the local magnetization vectors along the 〈111〉 anisotropy axes are determined from the M(H) experimental curves. The data obtained for ferromagnetic inverted opal-like nanostructures are compared with the behavior of magnetization in continuous nickel and cobalt films.

This is a preview of subscription content, access via your institution.

References

  1. M. J. Harris, S. T. Bramwell, D. F. McMorrow, et al., Phys. Rev. Lett. 79, 2554 (1997).

    Article  Google Scholar 

  2. A. P. Ramirez, A. Hayashi, R. J. Cava, et al., Nature 399 (6734), 333 (1999).

    Article  Google Scholar 

  3. C. Castelnovo, R. Moessner, and S. L. Sondhi, Ann. Rev. Condens. Matter Phys. 3, 35 (2012).

    Article  Google Scholar 

  4. S. T. Bramwell, S. R. Giblin, S. Calder, et al., Nature 461, 956 (2009).

    Article  Google Scholar 

  5. J. E. Greedan, J. Mater. Chem. 11, 37 (2001).

    Article  Google Scholar 

  6. J. E. Greedan, J. Alloys Comp. 408–412, 444 (2006).

    Article  Google Scholar 

  7. C. Nisoli, R. Moessner, and P. Schiffer, Rev. Mod. Phys. 85, 1473 (2013).

    Article  Google Scholar 

  8. R. F. Wang, C. Nisoli, R. S. Freitas, et al., Nature 439, 303 (2006).

    Article  Google Scholar 

  9. M. Tanaka, E. Saitoh, H. Miyajima, T. Yamaoka, and Y. Iye, Phys. Rev. B 73, 052411 (2006).

    Article  Google Scholar 

  10. A. A. Mistonov, I. S. Shishkin, I. S. Dubitsiki, N. A. Grigoryeva, H. Eckerlebe, and S. V. Grigoriev, J. Exp. Theor. Phys. 120, 844 (2015).

    Article  Google Scholar 

  11. A. A. Mistonov, N. A. Grigoryeva, A. V. Chumakov, et al., Phys. Rev. B 87, 220408 (2013).

    Article  Google Scholar 

  12. N. A. Grigoryeva, A. A. Mistonov, K. S. Napolskii, N. A. Sapoletova, A. A. Eliseev, W. Bouwman, D. V. Byelov, A. V. Petukhov, D. Yu. Chernyshov, H. Eckerlebe, A. V. Vasilieva, and S. V. Grigoriev, Phys. Rev. B 84, 064405 (2011).

    Article  Google Scholar 

  13. S. V. Grigoriev, K. S. Napolskii, N. A. Grigoryeva, A. V. Vasilieva, A. A. Mistonov, D. Yu. Chernyshov, A. V. Petukhov, D. V. Belov, A. A. Eliseev, A. V. Lukashin, Yu. D. Tretyakov, A. S. Sinitskii, and H. Eckerlebe, Phys. Rev. B 79, 045123 (2009).

    Article  Google Scholar 

  14. A. A. Zhukov, A. V. Goncharov, P. A. J. de Groot, M. A. Ghanem, P. N. Bartlett, R. Boardman, and G. Karapetrov, Appl. Phys. Lett. 88, 062511 (2006).

    Article  Google Scholar 

  15. A. A. Zhukov, A. V. Goncharov, P. A. J. de Groot, M. A. Ghanem, I. S. El-Hallag, P. N. Bartlett, and G. Karapetrov, J. Appl. Phys. 97, 10J701 (2005).

    Article  Google Scholar 

  16. G. Hukic-Markosian, Y. Zhai, D. E. Montanari, S. Ott, A. Braun, D. Sun, and M. H. Bartl, J. Appl. Phys. 116, 013906 (2014).

    Article  Google Scholar 

  17. Y. Hao, F. Q. Zhu, C. L. Chien, and P. C. Searson, J. Electrochem. Soc. 154, D65 (2007).

    Article  Google Scholar 

  18. L. Xu, L. D. Tung, L. Spinu, A. A. Zakhidov, R. H. Baughman, and J. B. Wiley, Adv. Mater. 15, 1562 (2003).

    Article  Google Scholar 

  19. A. A. Grunin, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, and A. A. Fedyanin, J. Appl. Phys. 111, 07A948 (2012).

    Article  Google Scholar 

  20. P. N. Bartlett, P. R. Birkin, and M. A. Ghanem, Chem. Commun. 17, 1671 (2000).

    Article  Google Scholar 

  21. L. Xu, W. L. Zhou, C. Frommen, R. H. Baughman, A. A. Zakhidov, L. Malkinski, J.-Q. Wang, and J. B. Wiley, Chem. Commun. 12, 997 (2000).

    Article  Google Scholar 

  22. C. Kittel, Phys. Rev. 73, 155 (1948).

    Article  Google Scholar 

  23. M. Kaur, J. S. McCloy, W. Jiang, et al., J. Phys. Chem. C 116, 12875 (2012).

    Article  Google Scholar 

  24. C. Prados, B. J. Hattink, E. Pina, X. Batllé, A. Labarta, J. M. González, and A. Hernando, IEEE Trans. Magn. 36, 2957 (2000).

    Article  Google Scholar 

  25. W. C. Nunes, W. S. D. Folly, J. P. Sinnecker, and M. A. Novak, Phys. Rev. B 70, 014419 (2004).

    Article  Google Scholar 

  26. V. Chumakova, G. A. Valkovskiy, A. A. Mistonov, V. A. Dyadkin, N. A. Grigoryeva, N. A. Sapoletova, K. S. Napolskii, A. A. Eliseev, A. V. Petukhov, and S. V. Grigoriev, Phys. Rev. B 90, 144103 (2014).

    Article  Google Scholar 

  27. Ch. Kittel, Introduction to Solid State Physics (Wiley, New York, 1995).

    Google Scholar 

  28. K. Yoshizawa, F. Mohri, G. Nuspl, and T. Yamabe, J. Phys. Chem. B 102, 5432 (1998).

    Article  Google Scholar 

  29. S. Ohkoshi, Y. Abe, A. Fujishima, and K. Hashimoto, Phys. Rev. Lett. 82, 1285 (1999).

    Article  Google Scholar 

  30. S. I. Ohkoshi and K. Hashimoto, J. Am. Chem. Soc. 121, 10591 (1999).

    Article  Google Scholar 

  31. H. Kageyama, D. I. Khomskii, R. Z. Levitin, M. M. Markina, T. Okuyama, T. Uchimoto, and A. N. Vasil’ev, J. Magn. Magn. Mater. 262, 445 (2003).

    Article  Google Scholar 

  32. H. Kageyama, D. I. Khomskii, R. Z. Levitin, and A. N. Vasil’ev, Phys. Rev. B 67, 224422 (2003).

    Article  Google Scholar 

  33. U. Kobler and R. Marx, Phys. Rev. B 35, 9809 (1987).

    Article  Google Scholar 

  34. S. Bandow, T. Yamaguchi, and S. Iijima, Chem. Phys. Lett. 401, 380 (2005).

    Article  Google Scholar 

  35. I. Felner and E. Prilutskiy, J. Supercond. Nov. Magn. 25, 2547 (2012).

    Article  Google Scholar 

  36. I. Felner, J. Supercond. Nov. Magn 26, 514 (2013).

    Article  Google Scholar 

  37. F. Huang, Zh. Wang, X. Lu, J. Zhang, K. Min, W. Lin, R. Ti, T. Xu, J. He, Ch. Yue, and J. Zhu, Sci. Rep. 3, 2907 (2013).

    Google Scholar 

  38. S. Vijayanand, M. B. Mahajan, H. S. Potdar, and P. A. Joy, Phys. Rev. B 80, 064423 (2009).

    Article  Google Scholar 

  39. C. R. Sankar and P. A. Joy, Phys. Rev. B 72, 024405 (2005).

    Article  Google Scholar 

  40. F. Huang, X. Lu, T. Xu, et al., Thin Solid Films 520, 6489 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. S. Shishkin.

Additional information

Original Russian Text © I.S. Shishkin, A.A. Mistonov, N.A. Grigoryeva, D. Menzel, S.V. Grigoriev, 2016, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2016, No. 2, pp. 3–15.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shishkin, I.S., Mistonov, A.A., Grigoryeva, N.A. et al. Temperature behavior of the local magnetization vectors in ferromagnetic inverted opal-like structures. J. Synch. Investig. 10, 156–168 (2016). https://doi.org/10.1134/S102745101601033X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S102745101601033X

Keywords

  • inverted opal-like nanostructures
  • model of critical fields
  • SQUID-magnetometry