Skip to main content

EPR and photoluminescence spectra of smooth CD x films from T-10 tokamak: The effect of iron impurity

Abstract

The electron and spin structure of thick smooth hydrocarbon CD x films (“flakes”) with a high relative deuterium concentration of x ~ 0.5, redeposited from deuterium plasma discharge onto the walls of the vacuum chamber of the T-10 tokamak and containing ~1 at % of 3d-metal impurities due to erosion of the chamber walls, are studied using electron paramagnetic resonance (EPR) and photoluminescence (PL). The resulting spectra are compared for the first time to the EPR and photoluminescence spectra of polymer (soft) a-C:H(D) films (H(D)/C ~ 0.5), which are considered model analogues of smooth CD x films. A certain similarity of the CD x films with a-C:H films was found in the electronic structure of the valence band. At the same time, the differences in the EPR and photoluminescence spectra were observed due to the presence of 3d-metal impurities in the CD x samples, contributing to the conversion of sp 3sp 2 in the formation of films in the tokamak and upon heating and thermal desorption. An impurity of, presumably, 3d metals was detected for the first time by EPR in the a-C:H films in an amount of approximately 0.2 ppm, related to the evaporation of graphite.

This is a preview of subscription content, access via your institution.

References

  1. N. Yu. Svechnikov, V. G. Stankevich, A. M. Lebedev, K. A. Menshikov, B. N. Kolbasov, M. I. Guseva, L. N. Khimchenko, D. Rajarathnam, and Yu. Yu. Kostetsky, Plasma Dev. Operat. 14, 137 (2006).

    Article  Google Scholar 

  2. N. Yu. Svechnikov, V. G. Stankevich, A. M. Lebedev, K. A. Menshikov, B. N. Kolbasov, and V. V. Kriventsov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 1, 13 (2007).

    Article  Google Scholar 

  3. N. Yu. Svechnikov, V. G. Stankevich, L. P. Sukhanov, K. A. Menshikov, A. M. Lebedev, B. N. Kolbasov, Y. V. Zubavichus, and D. Rajarathnam, J. Nucl. Mater. 376, 152 (2008).

    Article  Google Scholar 

  4. N. Yu. Svechnikov, V. G. Stankevich, K. A. Menshikov, A. M. Lebedev, B. N. Kolbasov, V. A. Trunova, D. Rajarathnam, and Yu. Kostetski, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2, 826 (2008).

    Article  Google Scholar 

  5. V. I. Krauz, Yu. V. Martynenko, N. Yu. Svechnikov, V. P. Smirnov, V. G. Stankevich, and L. N. Khimchenko, Phys. Usp. 53, 1015 (2010).

    Article  Google Scholar 

  6. V. G. Stankevich, N. Yu. Svechnikov, Ya. V. Zubavichus, A. A. Veligzhanin, V. A. Somenkov, L. P. Sukhanov, K. A. Men’shikov, A. M. Lebedev, B. N. Kolbasov, K. Yu. Vukolov, L. N. Khimchenko, and D. Radzharatnam, Vopr. At. Nauki Tekh., Ser.: Termoyad. Sintez, No. 1, 3 (2011).

    Google Scholar 

  7. N. Yu. Svechnikov, V. G. Stankevich, I. I. Arkhipov, S. A. Grashin, K. I. Maslakov, A. M. Lebedev, L. P. Sukhanov, K. A. Menshikov, and Yu. V. Martynenko, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7, 863 (2013).

    Article  Google Scholar 

  8. M. Yoshida, T. Tanabe, T. Hayashi, H. Nakano, K. Masaki, and K. Itami, Physica Scr. T 145, 014023 (2011).

    Article  Google Scholar 

  9. T. Loarer, J. Nucl. Mater. 390, 20 (2009).

    Article  Google Scholar 

  10. Y. Zhang and D. Book, Int. J. Energy Res. 37, 720 (2013).

    Article  Google Scholar 

  11. B. J. Jones, S. Wright, R. C. Barklie, J. Tyas, J. Franks, and A. J. Reynolds, Diamond Rel. Mater. (2008). doi:10.1016/j.diamond.2008.02.025

    Google Scholar 

  12. M. Hoinkis, E. D. Tober, R. L. White, and M. S. Crowder, Appl. Phys. Lett. 61, 2653 (1992).

    Article  Google Scholar 

  13. J. Robertson, Mater. Sci. Eng. R 37, 129 (2002).

    Article  Google Scholar 

  14. D. Arčon, Z. Jagličič, A. Zorko, A. V. Rode, A. G. Christy, N. R. Madsen, E. G. Gamaly, and B. Luther-Davies, Phys. Rev. B 74, 014437 (2006).

    Article  Google Scholar 

  15. R. S. Alger, Electron Paramagnetic Resonance: Techniques and Applications (Interscience, New York, 1968).

    Google Scholar 

  16. J. Robertson, Semicond. Sci. Technol. 18, 12 (2003).

    Article  Google Scholar 

  17. A. Barbon and M. Brustolon, Appl. Magn. Reson. 42, 197 (2012).

    Article  Google Scholar 

  18. H. J. von Bardeleben, J. L. Cantin, A. Zeinert, B. Racine, K. Zellama, and P. N. Hai, Appl. Phys. Lett. 78, 2843 (2001).

    Article  Google Scholar 

  19. M. Tommasini, C. Castiglioni, G. Zerbi, A. Barbon, and M. Brustolon, Chem. Phys. Lett. 516, 220 (2011).

    Article  Google Scholar 

  20. E. A. Zhilinskaya, G. Delahay, M. Mauvezin, B. Coq, and A. Aboukaïs, Langmuir 19, 3596 (2003).

    Article  Google Scholar 

  21. T. Delineau, T. Allard, J.-P. Muller, O. Barges, J. Yvon, and J.-M. Cases, Clays Clay Miner. 42, 308 (1994).

    Article  Google Scholar 

  22. A. I. Shames, A. M. Panich, W. Kempinski, A. E. Alexenskii, M. V. Baidakova, A. T. Dideikin, V. Yu. Osipov, V. I. Skilitski, E. Ozawa, and A. Ya. Yul, J. Phys. Chem. Solids 63, 1993 (2002).

    Article  Google Scholar 

  23. K. Flogeac, E. Guillon, and M. Aplincourt, J. Colloid Interface Sci. 286, 596 (2005).

    Article  Google Scholar 

  24. H. Figueiredo, B. Silva, M. Manuela, M. Raposo, A. M. Fonseca, I. C. Neves, C. Quintelas, and T. Tavares, Microporous Mesoporous Mater. 109, 163 (2008).

    Article  Google Scholar 

  25. D. M. Murphy and M. Chiesa, Electron Paramagn. Reson. 19, 279 (2004).

    Article  Google Scholar 

  26. R. Stefan, P. Pascuta, A. Popa, O. Raita, E. Indrea, and E. Culea, J. Phys. Chem. Solids 73, 221 (2012).

    Article  Google Scholar 

  27. S. Chakrabarti, S. K. Mandal, B. K. Nath, D. Das, D. Ganguli, and S. Chaudhuri, Eur. Phys. J. B 34, 163 (2003).

    Article  Google Scholar 

  28. D. Coldfarb, M. Bemardo, K. C. Strohmaier, D. E. W. Vaughan, and H. Thomann, J. Am. Chem. Soc. 116, 6344 (1994).

    Article  Google Scholar 

  29. G. Berlier, G. Spoto, P. Fisicaro, S. Bordiga, A. Zecchina, E. Giamello, and C. Lamberti, Microchem. J. 71, 101 (2002).

    Article  Google Scholar 

  30. A. Kromka, R. Kravetz, A. Poruba, J. Zemek, V. Perina, J. Rosa, and M. Vanecek, Phys. Status Solidi A 199, 108 (2003).

    Article  Google Scholar 

  31. J. Krzystek, A. Ozarowsk, and J. Telser, Coord. Chem. Rev. 250, 2308 (2006).

    Article  Google Scholar 

  32. Y. Deligiannakis, A. Boussac, H. Bottin, V. Perrier, O. Barzu, and A.-M. Gilles, Biochemistry 3, 9446 (1997).

    Article  Google Scholar 

  33. M. R. Cheesman, F. H. A. Kadir, J. Al-Basseet, F. AlMassad, J. Farrare, C. Greenwood, A. J. Thomson, and G. R. Moore, Biochem. J. 286, 361 (1992).

    Article  Google Scholar 

  34. R. Bouzerar, A. Zeinert, and H.-J. von Bardeleben, Diamond Relat. Mater. 14, 1108 (2005).

    Article  Google Scholar 

  35. A. J. Freeman and Y.-J. Zhao, J. Phys. Chem. Solids 64, 1453 (2003).

    Article  Google Scholar 

  36. I. M. L. Billas, A. Chatelain, and W. A. de Heer, Science 265, 1682 (1994).

    Article  Google Scholar 

  37. H. Zeng, S. Sun, T. S. Vedantam, J. P. Liu, Z.-R. Dai, and Z.-L. Wang, Appl. Phys. Lett. 80, 2583 (2002).

    Article  Google Scholar 

  38. X. N. Xua, Y. Wolfus, A. Shaulov, Y. Yeshurun, I. Felner, I. Nowik, Yu. Koltypin, and A. Gedanken, Appl. Phys. 91, 4611 (2002).

    Article  Google Scholar 

  39. V. Singh and V. Banerjee, J. Appl. Phys. 112, 114912 (2012).

    Article  Google Scholar 

  40. W. Wu, Q. He, and C. Zhong Jiang, Nanoscale Res. Lett. 3, 397 (2008).

    Article  Google Scholar 

  41. C. Cannas, G. Concas, D. Gatteschi, A. Musinu, G. Piccaluga, and C. Sangregorio, J. Mater. Chem. 12, 3141 (2002).

    Article  Google Scholar 

  42. S. M. Aharoni and M. H. Litt, J. Appl. Phys. 42, 352 (1971).

    Article  Google Scholar 

  43. V. I. Lesin, Yu. A. Koksharov, and G. B. Khomutov, Georesursy, Geoenerget., Geopolit., No. 1 (1) (2010). http://oilgasjournal.ru/2009-1/4-rubric/lesin.html

    Google Scholar 

  44. N. Guskos, E. A. Anagnostakis, and A. Guskos, J. Achievm. Mater. Manufact. Eng. 24, 26 (2007).

    Google Scholar 

  45. N. Guskos, G. Zolnierkiewicz, J. Typec, J. Blyszko, W. Kiernozycki, and U. Narkiewicz, Rev. Adv. Mater. Sci. 23, 113 (2010).

    Google Scholar 

  46. L. Calliari, M. Filippo, G. Gottardi, N. Laidani, and M. Anderle, Surf. Interface Anal. 38, 761 (2006).

    Article  Google Scholar 

  47. S. C. Ray, G. Fanchini, A. Tagliaferro, B. Bose, and D. Dasgupta, J. Appl. Phys. 94, 870 (2003).

    Article  Google Scholar 

  48. B. Pilawa, A. B. Wieckowski, and M. Lewandowski, Magn. Reson. Chem. 37, 871 (1999).

    Article  Google Scholar 

  49. C. Bolm, M. Martin, G. Gescheidt, C. Palivan, D. Neshchadin, H. Bertagnolli, M. Feth, A. Schweiger, G. Mitrikas, and J. Harmer, J. Am. Chem. Soc. 125, 6222 (2003).

    Article  Google Scholar 

  50. B. V. Padlyaka, W. Wojtowicz, V. T. Adamiva, Ya. V. Buraka, and I. M. Teslyuk, Acta Phys. Polon. A 117, 122 (2010).

    Google Scholar 

  51. H. Smigielska, G. Lewandowicz, J. Goslar, and S. K. Hoffmann, Acta Phys. Polon. A 108, 303 (2005).

    Google Scholar 

  52. K. C. Lombardi, J. L. Guimarães, A. S. Mangrich, N. Mattoso, M. Abbate, W. H. Schreiner, and F. Wypych, J. Braz. Chem. Soc. 13, 270 (2002).

    Article  Google Scholar 

  53. L. Hall, Clay Miner. 15, 321 (1980).

    Article  Google Scholar 

  54. S. de Wolf, C. Ballif, and M. Kondo, Phys. Rev. B 85, 113302 (2012).

    Article  Google Scholar 

  55. T. Ehara, in Nanocrystalline Silicon: Electron Spin Resonance. Encyclopedia of Nanoscience and Nanotechnology, Ed. by H. S. Nalwa (Amer. Sci. Publ., NY, 2004), Vol. 6, p. 495.

  56. H. H. Woodbury and G. W. Ludwig, Phys. Rev. 117, 102 (1960).

    Article  Google Scholar 

  57. A. I. Dmitriev, A. A. Skvortsov, O. V. Koplak, R. B. Morgunov, and I. I. Proskuryakov, Phys. Solid State 53, 1547 (2011).

    Article  Google Scholar 

  58. O. G. Kaplenko, I. V. Gurin, and T. S. Yakovitskaya, Vopr. At. Nauki Tekh., Ser. Fiz. Rad. Povrezhd. Rad. Mater., No. 2, 132 (2011).

    Google Scholar 

  59. F. Demichelis, S. Schreiter, and A. Tagliaferro, Phys. Rev. B 51, 2143 (1995).

    Article  Google Scholar 

  60. H. Zhang, W. Wu, Ch. Gong, W. Wang, Z. He, J. Li, Xin. Ju, Y. Tang, and E. Xie, Appl. Phys. A 98, 895 (2010).

    Article  Google Scholar 

  61. A. Alqudami and S. Annapoorni, Plasmonic 2, 5 (2007).

    Article  Google Scholar 

  62. H. Fei, X. Ai, M. Gao, Y. Yang, T. Zhang, and J. Shen, J. Luminesc. 66–67, 345 (1995).

    Article  Google Scholar 

  63. M. Fule, J. Budai, S. Tóth, M. Veres, and M. Koos, J. Non-Cryst. Solids 352, 1340 (2006).

    Article  Google Scholar 

  64. L. Brus, J. Phys. Chem. 90, 2555 (1986).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Svechnikov.

Additional information

Original Russian Text © N.Yu. Svechnikov, V.G. Stankevich, A.M. Lebedev, L.P. Sukhanov, K.A. Menshikov, 2016, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2016, No. 1, pp. 21–33.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Svechnikov, N.Y., Stankevich, V.G., Lebedev, A.M. et al. EPR and photoluminescence spectra of smooth CD x films from T-10 tokamak: The effect of iron impurity. J. Synch. Investig. 10, 23–34 (2016). https://doi.org/10.1134/S1027451016010183

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451016010183

Keywords

  • hydrocarbon films
  • tokamak
  • deuterium plasma
  • electron paramagnetic resonance
  • photoluminescence