Skip to main content

Ultraviolet-visible spectroscopic characterization of lanthanum beryllate crystals doped with Er, Nd, or Pr ions

Abstract

Spectroscopic characterization of lanthanum beryllate La2Be2O5 (BLO) single crystals doped with trivalent ions of Eu, Nd or Pr, was carried out in the ultraviolet-visible spectral range using synchrotron radiation spectroscopy in combination with conventional optical absorption and luminescence spectroscopy techniques. On the basis of the obtained data, the energy level diagram for these trivalent impurity ions in BLO host lattice was developed; the optical and electronic properties of the crystals were determined; the possibility of the 4f-4f, 4f-5d and charge transfer transitions was analyzed; spectroscopic properties of the lattice defects formed during the introduction of trivalent impurity ions in the BLO host lattice, were investigated. We found that the lattice defects are responsible for a wide-band photoluminescence (PL) in the energy region of 400–600 nm. The most efficient excitation of the defect photoluminescence in the energy gap of BLO occurs in broad PL excitation-bands at 270 and 240 nm. The PL intensity of defects depends on the type of impurity ion and increases in the sequence: Pr-Nd-Er.

This is a preview of subscription content, access via your institution.

References

  1. Y. K. Voronko, G. V. Maksimova, V. V. Osiko, A. A. Sobol, B. P. Starikov, and M. I. Timoshechkin, Phys. Status Solidi A 17, K41 (1973).

    Article  Google Scholar 

  2. R. C. Morris, C. F. Cline, R. F. Begley, M. Dutoit, P. J. Harget, H. P. Jenssen, T. S. LaFrance, and R. Webb, Appl. Phys. Lett. 27, 444 (1975).

    Article  Google Scholar 

  3. H. P. Jenssen, R. F. Begley, R. Webb, and R. C. Morris, J. Appl. Phys. 47, 1496 (1976).

    Article  Google Scholar 

  4. A. A. Kaminskii, T. Ngoc, S. E. Sarkisov, V. N. Matrosov, and M. I. Timoshechkin, Phys. Status Solidi A 59, 121 (1980).

    Article  Google Scholar 

  5. A. W. Tucker, M. Birnbaum, and C. L. Fincher, J. Appl. Phys. 52, 3067 (1981).

    Article  Google Scholar 

  6. A. W. Tucker, M. Birnbaum, and C. L. Fincher, J. Appl. Phys. 52, 5434 (1981).

    Article  Google Scholar 

  7. R. Scheps, Appl. Opt. 28, 89 (1989).

    Article  Google Scholar 

  8. L. A. Harris and H. L. Yakel, Acta Crystallogr. B 24, 672 (1968).

    Article  Google Scholar 

  9. T. A. Betenekova, A. V. Kruzhalov, N. M. Osipova, V. P. Palvanov, V. L. Petrov, and I. N. Shabanova, Sov. Phys. Solid State 25, 95 (1983).

    Google Scholar 

  10. A. V. Kruzhalov, V. A. Pustovarov, A. A. Maslakov, V. L. Petrov, and B. V. Shulgin, Opt. Spectrosc. 63, 268 (1987).

    Google Scholar 

  11. V. A. Pustovarov, V. L. Petrov, E. I. Zinin, M. Kirm, G. Zimmerer, and B. V. Shulgin, Phys. Solid State 42, 253 (2000).

    Article  Google Scholar 

  12. A. V. Kruzhalov, A. A. Maslakov, V. L. Petrov, and B. V. Shulgin, Zh. Prikl. Spektrosk. 45, 859 (1986).

    Google Scholar 

  13. D. M. Gualtieri, J. Luminesc. 60–61, 127 (1994).

    Article  Google Scholar 

  14. N. V. Kuleshov, A. S. Shinkevich, V. G. Shcherbitsky, V. P. Mikhailov, T. Danger, T. Sandrock, and G. Huber, Opt. Mater. 5, 111 (1996).

    Article  Google Scholar 

  15. S. Mahlik, M. Malinowski, and M. Grinberg, Opt. Mater. 34, 164 (2011).

    Article  Google Scholar 

  16. R. Piramidowicz, M. Kowalska, and M. Malinowski, J. Alloys Compd. 300–301, 430 (2000).

    Article  Google Scholar 

  17. V. Sudesh, J. A. Piper, E. M. Goldys, and R. S. Seymour, J. Opt. Soc. Am. B: Opt. Phys. 15, 239 (1998).

    Article  Google Scholar 

  18. J. B. Czirr and M. Berrondo, US Patent No. 5483062 (1996).

    Google Scholar 

  19. V. A. Pustovarov, I. N. Ogorodnikov, and E. A. Ospanbekov, J. Opt. Soc. Am. B: Opt. Phys. 32, 241 (2015).

    Article  Google Scholar 

  20. I. N. Ogorodnikov and V. A. Pustovarov, J. Luminesc. 162, 50 (2015).

    Article  Google Scholar 

  21. P. Dorenbos, J. Luminesc. 122–123, 315 (2007).

    Article  Google Scholar 

  22. E. G. Tsvetkov, G. M. Rylov, and V. N. Matrosov, Mater. Res. Bull. 41, 307 (2006).

    Article  Google Scholar 

  23. G. Zimmerer, Rad. Meas. 42, 859 (2007).

    Article  Google Scholar 

  24. G. H. Dieke, Spectra and Energy Levels of Rare Earth Ions in Crystals (Wiley Interscience, New York, 1968).

    Google Scholar 

  25. R. T. Wegh, A. Meijerink, R.-J. Lamminmäki, and J. Holsa, J. Luminesc. 87–89, 1002 (2000).

    Article  Google Scholar 

  26. A. J. Wojtowicz and M. Malinowski, in HASYLAB Annual Report (Hamburg, 1999), p. 277.

    Google Scholar 

  27. V. A. Pustovarov, in Proceedings of the 17th International Conference on Luminescence and Optical Spectroscopy of Condensed Matter, Wrozlaw, 2014, p. 227.

  28. R. Shendrik and E. Radzhabov, IEEE Trans. Nucl. Sci. 57, 1295 (2010).

    Article  Google Scholar 

  29. V. N. Makhov, N. M. Khaidukov, N. Yu. Kirikova, M. Kirm, J. C. Krupa, T. V. Ouvarova, and G. Zimmerer, J. Luminesc. 87–89, 1005 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. N. Ogorodnikov.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pustovarov, V.A., Ogorodnikov, I.N. Ultraviolet-visible spectroscopic characterization of lanthanum beryllate crystals doped with Er, Nd, or Pr ions. J. Synch. Investig. 10, 48–57 (2016). https://doi.org/10.1134/S1027451015060178

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451015060178

Keywords

  • defect-center materials
  • ionic crystals
  • laser materials
  • optical properties
  • lanthanum beryllate