Skip to main content

Computer simulation of the xenon-cluster bombardment of mercury on graphene

Abstract

The bombardment of a target with Xe13 clusters with kinetic energies ranging from 5 to 30 eV and an incident angle of θ = 0° is studied using the molecular dynamics method. The target consists of mercury on partially hydrogenated imperfect graphene. The complete cleaning of a graphene sheet from mercury is not reached after 125 cluster impacts. The radial distribution functions and vertical density profiles indicate the formation of Hg monomer vapor around the bombarded target. The Hg film has a tendency to curl into a droplet. For all cluster energies, the Hg atom mobility and stresses in the Hg film in the horizontal directions are higher than in the vertical direction. The roughness of the graphene sheet increases continuously under bombardment.

This is a preview of subscription content, access via your institution.

References

  1. F. E. Huggins, G. P. Huffman, G. E. Dunham, and C. L. Senior, Energy Fuels 13, 114 (1999).

    Article  Google Scholar 

  2. F. E. Huggins, N. Yapa, G. P. Huffman, and C. L. Senior, Fuel Process Technol. 82, 167 (2003).

    Article  Google Scholar 

  3. J. D. Laumb, S. A. Benson, and E. A. Olson, Fuel Process Technol. 85, 577 (2004).

    Article  Google Scholar 

  4. N. D. Hutson, B. C. Atwood, and K. G. Scheckel, Env. Sci. Technol. 41, 1747 (2007).

    Article  Google Scholar 

  5. J. Azamat, A. Khataee, and S. W. Joo, J. Mol. Graph. Model. 53, 112 (2014).

    Article  Google Scholar 

  6. H. W. Kim, H. W. Yoon, S.-M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J.-Y. Choi, and H. B. Park, Science 342, 91 (2013).

    Article  Google Scholar 

  7. A. E. Galashev and V. A. Polukhin, Phys. Met. Metallogr. 115, 697 (2014).

    Article  Google Scholar 

  8. A. E. Galashev and A. A. Galasheva, High Energy Chem. 48, 112 (2014).

    Article  Google Scholar 

  9. A. E. Galashev, Fiz. Mezomekh. 17 (1), 67 (2014).

    Google Scholar 

  10. A. E. Galashev and V. A. Polukhin, J. Surf. Invest.: X-Ray, Synchrotr. Neutron Tech. 8, 1082 (2014).

    Article  Google Scholar 

  11. A. Y. Galashev, Comp. Mater. Sci. 98, 123 (2015).

    Article  Google Scholar 

  12. A. Y. Galashev and O. R. Rakhmanova, Chin. Phys. B 24, 020701 (2015).

    Article  Google Scholar 

  13. N. Inui, K. Mochiji, and K. Moritani, Nanotechnology 19, 505501 (2008).

    Article  Google Scholar 

  14. H. Rafii-Tabar, Phys. Rep. 325, 239 (2000).

    Article  Google Scholar 

  15. F. D. Lamari and D. Levesque, Carbone 49, 5196 (2011).

    Article  Google Scholar 

  16. J. Tersoff, Phys. Rev. Lett. 61, 2879 (1988).

    Article  Google Scholar 

  17. S. J. Stuart, A. V. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000).

    Article  Google Scholar 

  18. A. Kutana and K. P. Giapis, Nano Lett. 6, 656 (2006).

    Article  Google Scholar 

  19. Y. M. Kim and S.-C. Kim, J. Korean Phys. Soc. 40, 293 (2002).

    Google Scholar 

  20. F.-Y. Li and R. S. Berry, J. Phys. Chem. 99, 2459 (1995).

    Article  Google Scholar 

  21. J. F. Ziegler, J. P. Biersack, and U. Littmark, Stopping and Ranges of Ions in Matter (Pergamon, New York, 1985), Vol. 1.

    Book  Google Scholar 

  22. A. Delcorte and B. J. Garrison, J. Phys. Chem. B 104, 6785 (2000).

    Article  Google Scholar 

  23. J. Wilcox, E. Sasmaz, and A. Kirchofer, J. Air Waste Managem. Assoc. 61, 418 (2011).

    Article  Google Scholar 

  24. H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. di Nola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).

    Article  Google Scholar 

  25. A. E. Galashev, V. A. Polukhin, I. A. Izmodenov, and O. R. Rakhmanova, Glass Phys. Chem. 32, 99 (2006).

    Article  Google Scholar 

  26. A. E. Galashev and O. R. Rakhmanova, Phys. Usp. 57, 970 (2014).

    Article  Google Scholar 

  27. S. Yu. Davydov, Phys. Solid State 54, 875 (2012).

    Article  Google Scholar 

  28. L. D. Landau and E. M. Lifshitz, Course of Theoretical Physics, Vol. 6: Fluid Mechanics (Nauka, Moscow, 1986; Pergamon, New York, 1987), p. 71.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. E. Galashev.

Additional information

The article is published in the original.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Galashev, A.E. Computer simulation of the xenon-cluster bombardment of mercury on graphene. J. Synch. Investig. 10, 15–22 (2016). https://doi.org/10.1134/S1027451015060099

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451015060099

Keywords

  • bombardment
  • graphene
  • droplet
  • xenon cluster
  • molecular dynamics
  • mercury