Skip to main content

In situ cell for X-ray single-crystal diffraction experiment at electric field

Abstract

A special cell for single crystal diffraction experiments under applied electric field has been developed and tested. A wide angle scan range provided by the cell allows the data collection in a large volume of the reciprocal space. Test experiments at synchrotron source for ferroelectric and relaxor single crystals show the possibility to the dependence of both Bragg and diffuse scattering on applied electric field. Further development of insitu diffraction methods with the proposed cell at synchrotronbased and laboratory instruments is discussed.

This is a preview of subscription content, access via your institution.

References

  1. S. B. Vakhrushev, A. A. Naberezhnov, and N. M. Okuneva, Phys. Solid State 40, 1728 (1998).

    Article  Google Scholar 

  2. M. K. Durbin, E. W. Jacobs, J. C. Hicks, and S.-E. Park, Appl. Phys. Lett. 74, 2848 (1999).

    Article  Google Scholar 

  3. F. Bai, N. Wang, J. Li, D. Viehland, P. M. Gehring, G. Xu, and G. Shirane, J. Appl. Phys. 96, 1620 (2004).

    Article  Google Scholar 

  4. H. Cao, J. Li, D. Viehland, and G. Xu, Phys. Rev. B 73, 184110 (2006).

    Article  Google Scholar 

  5. G. Xu, Z. Zhong, Y. Bing, Z.-G. Ye, and G. Shirane, Nature Mater. 5, 134 (2006).

    Article  Google Scholar 

  6. C. Stock, G. Xu, P. M. Gehring, H. Luo, Z. Zhao, H. Cao, J. F. Li, D. Viehland, and G. Shirane, Phys. Rev. B 76, 064122 (2007).

    Article  Google Scholar 

  7. J. E. Daniels, T. R. Finlayson, M. Davis, D. Damjanovic, A. J. Studer, M. Hoffman, and J. L. Jones, J. Appl. Phys. 101, 104108 (2007).

    Article  Google Scholar 

  8. J. E. Daniels, W. Jo, J. Rodel, V. Honkimaki, and J. L. Jones, Acta Mater. 58, 2103 (2010).

    Article  Google Scholar 

  9. W. Jo, J. E. Daniels, J. L. Jones, X. Tan, P. A. Thomas, D. Damjanovic, and J. Rodel, J. Appl. Phys. 109, 014110 (2011).

    Article  Google Scholar 

  10. J. E. Daniels, W. Jo, J. Rodel, D. Rytz, and W. Donner, Appl. Phys. Lett. 98, 252904 (2011).

    Article  Google Scholar 

  11. M. Hinterstein, J. Rouquette, J. Haines, Ph. Papet, M. Knapp, J. Glaum, and H. Fuess, Phys. Rev. Lett. 107, 077602 (2011).

    Article  Google Scholar 

  12. W. Ge, Ch. Luo, Ch. P. Devreugd, Q. Zhang, Y. Ren, J. Li, H. Luo, and D. Viehland, Appl. Phys. Lett. 103, 241914 (2013).

    Article  Google Scholar 

  13. Y. Kitanaka, Y. Noguchi, M. Miyayama, Y. Kagawa, Ch. Moriuoshi, Y. Kuroiwa, H. Fujisawa, and M. Shimizu, J. Ceram. Soc. Jpn. 121, 632 (2013).

    Article  Google Scholar 

  14. R. Garg, B. N. Rao, A. Senyshyn, P. S. R. Krishna, and R. Ranjan, Phys. Rev. B 88, 014103 (2013).

    Article  Google Scholar 

  15. Y. Kitanaka, K. Yanai, Y. Noguchi, M. Miyayama, Y. Kagawa, Ch. Moriyoshi, and Y. Kuroiwa, Phys. Rev. B 89, 104104 (2014).

    Article  Google Scholar 

  16. K. A. Schönau, M. Knapp, H. Kung, M. J. Hoffmann, H. Fuess, Phys. Rev. B 76, 144112 (2007).

    Article  Google Scholar 

  17. J. E. Daniels, A. Pramanick, and J. L. Jones, IEEE Trans. Ultrason., Ferroelectr., Freq. Control 56, 1539 (2009).

    Article  Google Scholar 

  18. F. Mo and K. Ramsoskar, J. Appl. Crystallogr. 42, 531 (2009).

    Article  Google Scholar 

  19. www.esrf.eu/news/general/atomic-displacements/index_html

  20. H. C. Walker, F. Fabrizi, F. Paolasini, L. de Bergevin, J. Herrero-Martin, A. T. Boothroyd, D. Prabhakaran, and D. F. McMorrow, Science 333 (6047), 1273 (2011).

    Article  Google Scholar 

  21. S.-E. Park and T. R. Shrout, Appl. Phys. 82, 1804 (1997).

    Article  Google Scholar 

  22. Y. Guo, H. Luo, D. Ling, H. Xu, T. He, and Zh. Yin, J. Phys.: Condens. Matter 15, L77 (2003).

    Google Scholar 

  23. E. B. Araujo, in Proceedings of the Congress on Ceramic Engineering and Materials Science, Ceramics and Glasses, Aveiro-Portugal, November, 16–18, 2011 (2011), Ch. 3, p. 43.

    Google Scholar 

  24. A. K. Singh, D. Pandey, and O. Zaharko, Phys. Rev. B 74, 024101 (2006).

    Article  Google Scholar 

  25. J. Wooldridge, S. Ryding, S. Brown, T. L. Burnett, M. G. Cain, R. Cernik, R. Hino, M. Stewart and P. Thompson, J. Synchrotr. Rad. 19, 710 (2012).

    Article  Google Scholar 

  26. D. Chernyshov, W. van Beek, H. Emerich, M. Milanesio, A. Urakawa, D. Viterbo, L. Palin, and R. Caliandro, Acta Crystallogr. A 67, 327 (2011).

    Article  Google Scholar 

  27. R. Caliandro, D. Chernyshov, H. Emerich, M. Milanesio, L. Palin, A. Urakawa, W. van Beek, and D. Viterbo, J. Appl. Crystallogr. 45, 458 (2012).

    Article  Google Scholar 

  28. H. H. Sonsteby, D. Chernyshov, M. Getz, O. Nilsen, and H. Fjellvag, J. Synchrotr. Rad. 20, 644 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Yu. Vergentev.

Additional information

Original Russian Text © T.Yu. Vergentev, V. Dyadkin, D.Yu. Chernyshov, 2015, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2015, No. 5, pp. 15–20.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vergentev, T.Y., Dyadkin, V. & Chernyshov, D.Y. In situ cell for X-ray single-crystal diffraction experiment at electric field. J. Synch. Investig. 9, 436–441 (2015). https://doi.org/10.1134/S1027451015030131

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451015030131

Keywords

  • synchrotron radiation
  • single-crystal diffraction
  • ferroelectric
  • relaxor
  • diffuse scattering