Skip to main content
Log in

Effect of the fullerene C60 on the structure of asymmetric microporous membranes based on polyamidoimide

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

Small-angle neutron scattering is applied to study film-gradient membranes of polyamidoimide and similar membranes, modified by the addition of a fullerene C60 (2 wt %) during phase-inverted sedimentation of the polymer solution. It is demonstrated that membranes without a fullerene have a system of nanoscale pores filling ∼20% of the bulk polymer and having a correlation radius of R C ≈ 20 nm. However, the introduction of a fullerene leads to a decrease in the pore size to R C ≈ 15 nm, and their volume fraction decreases by ∼40%. In this regard, we discuss the role of fullerenes inclined to the creation of molecular complexes by linking chains, which is important for regulation of the molecular pore structure of membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. S. Ivanchev, V. S. Likhomanov, O. N. Primachenko, et al., Petroleum Chemistry 52(7), 453 (2012).

    Article  Google Scholar 

  2. Yu. V. Kul’velis, V. T. Lebedev, V. A. Trunov, et al., Petroleum Chemistry 52(8), 565 (2012).

    Article  Google Scholar 

  3. N. Nakano, R. Azuma, M. Nakashima, and M. Horiguchi, US Patent No. 5409785 (1995).

  4. Yu. V. Kul’velis, V. T. Lebedev, V. A. Trunov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 825 (2012).

    Article  Google Scholar 

  5. M. Mulder, Basic Principles of Membrane Technology (Kluwer Academic, Dordrecht, 1996).

    Book  Google Scholar 

  6. Yu. I. Dytnerskii, V. P. Brykov, and G. G. Kagramanov, Membrane Separation of Gases (Khimiya, Moscow, 1991) [in Russian].

    Google Scholar 

  7. S. V. Kononova, Yu. P. Kuznetsov, A. V. Shchukarev, et al., Russ. J. Appl. Chem. 76, 791 (2003).

    Article  Google Scholar 

  8. S. V. Kononova, Yu. P. Kuznetsov, T. E. Sukhanova, et al., Polym. Sci. 35, 229 (1993).

    Google Scholar 

  9. S. V. Kononova and Yu. P. Kuznetsov, in Proceedings of the 1993 International Congress on Membranes and Membrane Processes? ICOM’93, Heidelberg, August 1993, Vol. 2, p. 33.

  10. B. Z. Volchek, S. V. Kononova, E. N. Vlasova, et al., J. Opt. Technol. 70, 22 (2003).

    Article  Google Scholar 

  11. S. V. Kononova, R. V. Kremnev, Yu. G. Baklagina, et al., Crystallogr. Rep. 56, 502 (2011).

    Article  Google Scholar 

  12. V. V. Klechkovskaya, A. S. Orekhov, Yu. G. Baklagina, et al., in Proceedings of the 18th Russian Symposium on Scanning Electron Microscopy and Analytical Methods of Solid State Investigation (Chernogolovka, 2013), p. 296.

    Google Scholar 

  13. Yu. G. Baklagina, S. V. Kononova, V. A. Petrova, et al., Crystallogr. Rep. 58, 287 (2013).

    Article  Google Scholar 

  14. S. V. Kononova, G. N. Gubanova, E. N. Korytkova, and D. Timpu, Atomic Force Microscopy, Book 2 (InTech, Rijeka, 2012), p. 81.

    Google Scholar 

  15. R. E. Kesting, Synthetic Polymeric Membranes: A Structural Perspective, 2nd ed. (Wiley, New York, 1985), p. 105.

    Google Scholar 

  16. S. V. Kononova, E. V. Kruchinina, K. A. Romashkova, et al., Russ. J. Gen. Chem. 80, 1977 (2010).

    Article  Google Scholar 

  17. Yu. V. Kul’velis, S. V. Kononova, K. A. Romashkova, and V. T. Lebedev, Phys. Solid State 56, 86 (2014).

    Article  Google Scholar 

  18. C. Stropnik, V. Musil, and M. Brumen, Polymer 41, 9227 (2000).

    Article  Google Scholar 

  19. V. Laninovic, Polymer Sci. Ser. A 47, 744 (2005).

    Google Scholar 

  20. S. V. Kononova, Yu. P. Kuznetsov, K. A. Romashkova, and V. V. Kudryavtsev, Polymer Sci., Ser. A 48, 967 (2006).

    Article  Google Scholar 

  21. Yu. P. Kuznetsov, S. V. Kononova, K. A. Romashkova, et al., USSR Inventor’s Certificate No. 2126291 (1999).

  22. Yu. V. Kul’velis, V. A. Trunov, V. T. Lebedev, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 3, 379 (2009).

    Article  Google Scholar 

  23. V. T. Lebedev, Gy. Török, A. B. Mel’nikov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 3, 582 (2009).

    Article  Google Scholar 

  24. Yu. V. Kul’velis, V. T. Lebedev, V. A. Trunov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5, 113 (2011).

    Article  Google Scholar 

  25. V. M. Lebedev, V. T. Lebedev, D. N. Orlova, and V. I. Tikhonov, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 8, 411 (2014).

    Article  Google Scholar 

  26. A. V. Sidorovich, N. V. Mikhailova, Yu. G. Baklagina, et al., Vysokomol. Soedin., Ser. A 21, 172 (1979).

    Google Scholar 

  27. D. I. Svergun and L. A. Feigin, Small-Angle X-ray and Neutron Scattering (Nauka, Moscow, 1986) [in Russian].

    Google Scholar 

  28. D. V. Konarev and R. N. Lyubovskaya, Russ. Chem. Rev. 68, 19 (1999).

    Article  Google Scholar 

  29. P. Debye and A. M. Bueche, J. Appl. Phys. 20, 518 (1949).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. V. Kulvelis.

Additional information

Original Russian Text © Yu.V. Kulvelis, V.T. Lebedev, S.V. Kononova, Gy. Török, 2015, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2015, No. 1, pp. 10–15.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kulvelis, Y.V., Lebedev, V.T., Kononova, S.V. et al. Effect of the fullerene C60 on the structure of asymmetric microporous membranes based on polyamidoimide. J. Surf. Investig. 9, 6–11 (2015). https://doi.org/10.1134/S1027451014050322

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451014050322

Keywords

Navigation