Skip to main content
Log in

Ionization effects coupled with the residual products of nuclear reactions induced by cosmic protons in the metallization layers of modern 3D integrated-circuit assemblies

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

In modern integrated-circuit (IC) technology, an increase in transistor density leads to the fact that the insulated current-carrying metallized layers occupy a continuously increasing part of the chip volume. The aluminum in these layers is often replaced by copper and tungsten. The spallation reaction of Wnuclei induced by protons with an energy of ∼1 GeV creates a huge number of isotopes of different elements (from O to Ta). Experimental data on cross sections of the aforementioned nuclear reactions and the average velocities of residual fission fragments have been published. In this work, the published data are analyzed and the ionization effects of certain fragments of the reaction W(p, X) are estimated. It is assumed that this reaction occurs in the sensitive regions of transistors in an IC manufactured via 3D technology with clips made from tungsten rods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Novikov, V. N. Mileev, E. N. Voronina, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 3, 199 (2009).

    Article  Google Scholar 

  2. N. G. Chechenin, A. G. Kadmenskii, H. Motaveh, and M. I. Panasyuk, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 6, 303 (2012).

    Article  Google Scholar 

  3. N. G. Chechenin, J. Nucl. Eng. Technol. 2, 22 (2012).

    Google Scholar 

  4. K. I. Tapero, V. N. Ulimov, and A. M. Chlenov, Radiative Effects in Silicon Integrated Chips for Space Applications (Binom, Laborat. Znanii, Moscow, 2012) [in Russian].

    Google Scholar 

  5. V. Ya. Chumanov, A. G. Kadmenskii, and N. G. Chechenin, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 7, 254 (2013).

    Article  Google Scholar 

  6. D. V. Savchenkov, A. G. Petrov, A. V. Yanenko, A. I. Chumakov, P. A. Chubunov, V. S. Anashin, and S. A. Yakovlev, in Proceedings of the 16th All-Russia Scientific-Technical Conference on Radiation Stability of Electronic Systems (FGUP NII Priborov, Lytkarino, 2013), p. 167.

    Google Scholar 

  7. R. D. Schrimpf, R. A. Weller, M. H. Mendenhall, R. A. Reed, and L. W. Massengill, Nucl. Instrum. Methods Phys. Res. B 261, 1133 (2007).

    Article  Google Scholar 

  8. D. G. Gromov, The Textbook on Discipline ‘Metallization in Systems with Nanosized Elements’ (Mosk. Inst. Energet. Tekhnol., Moscow, 2011), p. 204 [in Russian].

    Google Scholar 

  9. P. M. Gouker, B. Tyrrell, M. Renzi, C. Chen, P. Wyatt, J. R. Ahlbin, S. Weeden-Wright, N. M. Atkinson, N. J. Gaspard, B. L. Bhuva, L. W. Massengill, E. Zhang, E. Schrimpf, R. A. Weller, M. P. King, and M. J. Gadlage, IEEE Trans. Nucl. Sci. 58, 2555 (2011).

    Article  Google Scholar 

  10. J. Beringer, J.-F. Arguin, R. M. Barnet, K. Copic, O. Dahl, D. E. Groom, C.-J. Lin, J. Lys, H. Murayama, C. G. Whol, C.-M. Yao, P. A. Zyla, C. Amsler, M. Antonelli, D. M. Asner, H. Baer, H. R. Band, T. Basaglia, C. W. Bauer, C. J. Beatty, V. I. Belousov, et al. (Particle Data Group), Phys. Rev. D: Part. Fields 86, 305 (2012).

    Article  Google Scholar 

  11. O. K. Frisch, Nature 143, 276 (1939).

    Article  Google Scholar 

  12. J. Cugnon, C. Volant, and S. Vuillier, Nucl. Phys. A 625, 729 (1997).

    Article  Google Scholar 

  13. S. G. Mashnik, K. K. Gudima, R. E. Praell, A. J. Sierk, M. I. Baznat, and N. V. Mokhov, arXiv:0805.0751v2 [nucl-th] (2008).

  14. J. Cugnon, Nucl. Phys. A 462, 751 (1987).

    Article  Google Scholar 

  15. A. Boudard, J. Cugnon, S. Leray, and C. Volant, Phys. Rev. C 66, 044615 (2002).

    Article  Google Scholar 

  16. D. Henzlova, A. S. Botvina, K.-H. Schmidt, V. Henzl, P. Napolitani, and M. V. Ricciardi, arXiv:0507003 [nucl-th].

  17. N. Bohr and J. A. Wheeler, Phys. Rev. 56, 426 (1939).

    Article  Google Scholar 

  18. H. A. Kramers, Physica 7, 284 (1940).

    Article  Google Scholar 

  19. P. Grange, L. Jan-Qing, and H. A. Weidenmueller, Phys. Rev. C 27, 2063 (1983).

    Article  Google Scholar 

  20. J. Benlliure, P. Armbruster, M. Bernas, A. Boudard, T. Enqvist, R. Legrain, S. Lerayd, F. Rejmund, K.-H. Schmidt, C. Stephan, L. Tassan-Got, and C. Volant, Nucl. Phys. A 700, 469 (2002).

    Article  Google Scholar 

  21. K.-H. Schmidt, Presentation on 2nd IP Eurotrans Internal Training Course on Nuclear Data for Transmutation: Status, Needs and Methods, Santiago de Compostela, Spain, 2006. http://igfae.usc.es/genp/documentos/eurotrans/KHSchmidt.pdf

  22. K. Nishio, Presentation on International Conference Fission 2013, Caen, France, 2013. http://pro.ganilspiral2.eu/events/workshops/fission2013/presentations/wednesday-29th-may-2013/super-heavy-elements

  23. C. Bockstiege, S. Steinhauser, J. Benlliure, H.-G. Clerc, A. Greve, A. Heinz, M. de Jong, A. R. Junghans, J. Muller, and K.-H. Schmidt, Phys. Lett. B 398, 259 (1997).

    Article  Google Scholar 

  24. K.-H. Schmidt, S. Steinhauser, C. Bockstiegel, A. Grewe, A. Heinz, A. R. Junghans, J. Benlliure, H. G. Clerc, M. de Jong, J. Muller, M. Pfutzner, and B. Voss, Nucl. Phys. A 665, 221 (2000).

    Article  Google Scholar 

  25. K.-H. Schmidt, B. Jurado, R. Pleskach, M. V. Ricciardi, J. Benlliure, T. Enquist, F. Farget, A. Basquias, L. Giot, V. Henzl, D. Henzlova, A. Kelic-Heil, et al., arXiv:1208.6115 [nucl-exp] (2009).

  26. M. Bernas, P. Armbruster, B. Benlliure, A. Boudard, E. Casarejos, T. Enqvist, A. Kelic, R. Legrain, S. Leray, J. Pereira, F. Rejmund, M.-V. Ricciardi, K.-H. Schmidt, C. Stephan, J. Taieb, L. Tassan-Got, and C. Volant, Nucl. Phys. A 765, 197 (2006).

    Article  Google Scholar 

  27. F. Rejmund, B. Mustapha, P. Armbruster, J. Benlliure, M. Bernas, A. Boudard, J. P. Dufour, T. Enqvist, R. Legrain, S. Leray, K.-H. Schmidt, C. Stephan, J. Taieb, L. Tassan-Got, and C. Volant, Nucl. Phys. A 683, 540 (2001).

    Article  Google Scholar 

  28. J. Benlliure, P. Armbruster, M. Bernas, A. Boudard, J. P. Dufour, T. Enqvist, R. Legrain, S. Leray, B. Mustapha, F. Rejmund, K.-H. Schmidt, S. Stephan, L. Tassan-Got, and C. Volant, Nucl. Phys. A 683, 513 (2001).

    Article  Google Scholar 

  29. S. G. Mashnik, K. K. Gudima, R. E. Praell, and A. J. Sierk, arXiv:0404018v1 [nucl-th] (2004).

  30. S. G. Mashnik, K. K. Gudima, N. V. Mokhov, and R. E. Praell, LANL Report LA-UR-07-6198 (Los Alamos, 2007). https://laws.lanl.gov/vhosts/mcnp.lanl.gov/pdf_files/la-ur-07-6198.pdf

  31. L. N. Andronenko, L. A. Vaishene, A. A. Kotov, M. M. Nesterov, and N. A. Tarasov, Sov. J. Part. Nucl. 18, 289 (1987).

    Google Scholar 

  32. http://geant4.cern.ch

  33. J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, Nucl. Instrum. Methods Phys. Res. B 268, 1818 (2010).

    Article  Google Scholar 

  34. H. Geissel, H. Weick, C. Scheidenberger, R. Bimbot, and D. Gardes, Nucl. Instrum. Methods Phys. Res. B 195, 3 (2002).

    Article  Google Scholar 

  35. O. N. Rosmei, A. Blazevic, S. Korostiy, R. Bock, D. H. H. Hoffmann, S. A. Pikuz, V. P. Efremov, V. E. Fortov, A. Fertman, T. Mutin, T. A. Pikuz, and A. Ya. Facnov, Phys. Rev. A 72, 052901 (2005).

    Article  Google Scholar 

  36. H. H. K. Tang, Nucl. Phys. A 752, 706c (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Ya. Chumanov.

Additional information

Original Russian Text © V.Ya. Chumanov, A.G. Kadmenskii, N.G. Chechenin, 2014, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2014, No. 12, pp. 36–45.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chumanov, V.Y., Kadmenskii, A.G. & Chechenin, N.G. Ionization effects coupled with the residual products of nuclear reactions induced by cosmic protons in the metallization layers of modern 3D integrated-circuit assemblies. J. Surf. Investig. 8, 1265–1274 (2014). https://doi.org/10.1134/S1027451014050048

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451014050048

Keywords

Navigation