Skip to main content
Log in

Modeling of the surface segregation taking into account the dielectric properties of the medium: Alkaline metals and alloys

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The surface segregation of alkaline metal atoms in binary alloys with various orientations of the near-surface faces is modeled by the density functional method (DFT). The influence of the dielectric properties of the contact medium on the surface and energy characteristics of the alloys with different concentrations is studied. The self-consistent calculation of the shift of the near-surface ionic planes, surface energy, and work function of electrons from the surface is performed. Gradient corrections for the kinetic and exchange correlation energies are taken into account to describe the arising strong inhomogeneity of the electronic system in the near-surface region. The modeling results are compared to the experimental data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. B. J. Bood and H. Bise, Surf. Sci. 52, 151 (1975).

    Article  Google Scholar 

  2. S. L. Granevskii, N. V. Dalakova, A. Z. Kashezhev, et al., Vopr. At. Nauki Tekh., No. 6 (2009).

    Google Scholar 

  3. M. Prutton, Introduction to Surface Physics (Clarendon, Oxford, 1994).

    Google Scholar 

  4. K. Oura, V. G. Lifshits, A. A. Saranin, A. V. Zotov, and M. Katayama, Surface Science: An Introduction (Springer, New York, 2003; Nauka, Moscow, 2006).

    Book  Google Scholar 

  5. E. V. Vasil’eva, R. M. Volkova, M. I. Zakharova, M. P. Matveeva, and G. D. Shnyrev, Platinum, Its Alloys, and Composite Materials (Metallurgiya, Moscow, 1980) [in Russian].

    Google Scholar 

  6. A. I. Gusev, Nanocrystalline Materials: Methods of Production and Properties (Ural. Otdel. RAN, Yekaterinburg, 1998) [in Russian].

    Google Scholar 

  7. C. Creemers, P. Deurinck, S. Helfensteyn, and J. Luyten, Appl. Surf. Sci. 219, 11 (2003).

    Article  Google Scholar 

  8. A. V. Matveev, J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 7, 774 (2013).

    Article  Google Scholar 

  9. S. V. Rempel and A. I. Gusev, Phys. Solid State 44, 68 (2002).

    Article  Google Scholar 

  10. A. N. Vakilov, M. V. Mamonova, A. V. Matveev, and V. V. Prudnikov, Theoretical Models and Methods in Surface Physics, The School-Book (Omsk. Gos. Univ., Omsk, 2005) [in Russian].

    Google Scholar 

  11. R. M. Digilov and V. A. Sozaev, Poverkhnost: Fiz., Khim., Mekh., No. 7, 42 (1988).

    Google Scholar 

  12. A. Z. Kashezhev, A. Kh. Mambetov, V. A. Sozaev, and D. V. Yaganov, Poverkhnost’, No. 12, 53 (2001).

    Google Scholar 

  13. R. M. Digilov and V. A. Sozaev, Poverkhnost: Fiz., Khim., Mekh., No. 4, 22 (1992).

    Google Scholar 

  14. V. A. Sozaev, K. P. Loshitskaya, and R. A. Chernyshova, Poverkhnost’, No. 9, 104 (2005).

    Google Scholar 

  15. A. V. Matveev, Kondens. Sredy Mezhfaz. Granitsy 14, 358 (2012).

    Google Scholar 

  16. A. V. Matveev, Vestn. Omsk. Univ., No. 2, 94 (2012).

    Google Scholar 

  17. A. V. Matveev, Vestn. Omsk. Univ., No. 4, 80 (2011).

    Google Scholar 

  18. Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy, Ed. by D. Briggs and M. Seah (Mir, Moscow, 1987; Wiley, New York, 1983).

    Google Scholar 

  19. A. N. Vakilov and V. V. Prudnikov, Fiz. Met. Metalloved., No. 8, 11 (1991).

    Google Scholar 

  20. A. N. Vakilov and V. V. Prudnikov, Poverkhnost: Fiz., Khim., Mekh., No. 12, 72 (1991).

    Google Scholar 

  21. R. V. Lebedev, P. P. Pugachevich, and S. N. Zadumkin, in Physical Chemistry of Surface Phenomena in Melts, Collection of Articles (Moscow, 1971), pp. 157–159 [in Russian].

    Google Scholar 

  22. B. B. Alchagirov and T. P. Osiko, Teplofiz. Vys. Temp. 25, 609 (1987).

    Google Scholar 

  23. Ju. I. Malov, M. D. Shebzukhov, and V. B. Lazarev, Surf. Sci. 44, 21 (1974).

    Article  Google Scholar 

  24. B. B. Alchagirov, R. Kh. Arkhestov, and Kh. B. Khokonov, Rasplavy, No. 3, 22 (1993).

    Google Scholar 

  25. Theory of the Inhomogeneous Electron Gas, Ed. by S. Lundqvist and N. H. March (Plenum Press, New York, London, 1983).

    Google Scholar 

  26. A. V. Matveev, Kondens. Sredy Mezhfaz. Granitsy 13, 289 (2011).

    Google Scholar 

  27. A. V. Matveev, M. V. Mamonova, and V. V. Prudnikov, Phys. Met. Metallogr. 97, 562 (2004).

    Google Scholar 

  28. A. V. Matveev and M. V. Kruglov, Vestn. Omsk. Univ., No. 4, 31 (2006).

    Google Scholar 

  29. A. V. Matveev, Poverkhnost’, No. 8, 89 (2007).

    Google Scholar 

  30. A. V. Matveev, Russ. Phys. J. 50, 646 (2007).

    Article  Google Scholar 

  31. A. V. Matveev, J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 5, 90 (2011).

    Article  Google Scholar 

  32. A. V. Matveev, J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 6, 56 (2012).

    Article  Google Scholar 

  33. A. V. Matveev, Vestn. Omsk. Univ., No. 2, 62 (2011).

    Google Scholar 

  34. A. V. Matveev, Modeling Adsorption of Metals, Collection of Scientific Articles (LAP Lambert Academic, Saarbrücken, 2012).

    Google Scholar 

  35. A. V. Matveev, Phys. Met. Metallogr. 105, 427 (2008).

    Article  Google Scholar 

  36. R. M. Kobeleva, B. R. Gel’chinskii, and V. F. Ukhov, Fiz. Met. Metalloved. 45, 25 (1978).

    Google Scholar 

  37. J. Ferrante and J. R. Smith, Surf. Sci. 38, 77 (1973).

    Article  Google Scholar 

  38. A. V. Matveev, J. Surf. Invest.: X-ray, Synchrotr. Neutron Tech. 3, 644 (2009).

    Article  Google Scholar 

  39. A. V. Matveev, Vestn. Omsk. Univ., No. 1, 13 (2008).

    Google Scholar 

  40. H. Bogdanov and K. F. Wojciechovski, J. Phys. D: Appl. Phys. 29, 1310 (1996).

    Article  Google Scholar 

  41. R. M. Kobeleva, A. V. Kobelev, V. E. Kuzema, et al., Fiz. Met. Metalloved., No. 3, 493 (1976).

    Google Scholar 

  42. V. A. Sozaev and R. A. Chernyshova, Tech. Phys. Lett. 29, 69 (2003).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Matveev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matveev, A.V. Modeling of the surface segregation taking into account the dielectric properties of the medium: Alkaline metals and alloys. J. Surf. Investig. 8, 1320–1330 (2014). https://doi.org/10.1134/S1027451014040399

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451014040399

Keywords

Navigation