Skip to main content

Different coloration of the nanostructured silicon surface upon plasma-assisted etching

Abstract

The effects of changes in the color of silicon plates with nanostructured surfaces versus the features of nanostructures are investigated. Vertical nanostructures with high aspect ratios are constructed via anisotropic two-stage plasma-assisted etching (Bosch process). The surface coloration is explained by the fact that incident radiation is partly trapped by waveguide edge modes and its remaining part is scattered at the surface. The surface-film color is related to the positive and negative curvature of the nanostructures formed as a result of the plasma-assisted process.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    C. V. Tikhov, I. A. Karpovich, and V. G. Testov, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 7, 27 (2013).

    Article  Google Scholar 

  2. 2.

    T. V. Panova and V. S. Kovivchak, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 6, 241 (2012).

    Article  Google Scholar 

  3. 3.

    T. E. Sukhanova, P. G. Ul’yanov, G. G. Vladimirov, S. I. Fedoseenko, V. K. Adamchuk, S. V. Valueva, A. Ya. Volkov, N. A. Matveeva, and L. N. Borovikova, J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 5, 440 (2011).

    Article  Google Scholar 

  4. 4.

    S. Bozhevolnyi, Plasmonics. Nanoguides and Circuits (Pan Stanford, Singapore, 2009).

    Google Scholar 

  5. 5.

    S. A. Maier, Plasmonics: Fundamental and Application (Springer, New York, 2007).

    Google Scholar 

  6. 6.

    K. W. Seo, M. Wober, and P. Steinvurze, Nano Lett. 11, 1851 (2011).

    Article  Google Scholar 

  7. 7.

    S. S. Walavalkar, A. P. Homyk, and C. E. Hofmann, Appl. Phys. Lett. 98, 153114 (2011).

    Article  Google Scholar 

  8. 8.

    L. Dobrzynsky and A. A. Maradudin, Phys. Rev. B 6, 3810 (1972).

    Article  Google Scholar 

  9. 9.

    A. Equiluz and A. A. Maradudin, Phys. Rev. B 14, 5526 (1976).

    Article  Google Scholar 

  10. 10.

    L. C. Davis, Phys. Rev. B 14, 5523 (1976).

    Article  Google Scholar 

  11. 11.

    A. D. Boardman, G. C. Aers, and R. Teshima, Phys. Rev. B 24, 5703 (1981).

    Article  Google Scholar 

  12. 12.

    D. E. Chang, A. S. Sorensen, and P. R. Hemmer, Phys. Rev. B 76, 035420 (2007).

    Article  Google Scholar 

  13. 13.

    F. Laermer and A. Schilp, US Patent No. 5501893 (1996).

  14. 14.

    F. Laermer and A. Schilp, US Patent No. 6531068 B2 (2003).

  15. 15.

    A. S. Davydov, Theory of Solid State (Nauka, Moscow, 1976) [in Russian].

    Google Scholar 

  16. 16.

    A. N. Tikhonov and A. A. Samarskii, Equations of Mathematical Physics (Nauka, Moscow, 1977) [in Russian].

    Google Scholar 

  17. 17.

    G. N. Watson, A Treatise on the Theory of Bessel Functions (Cambridge Univ., Cambridge, 1944; Inostr. Liter., Moscow, 1949), p. 798.

    Google Scholar 

  18. 18.

    V. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Nat. Bur. Stds. Appl. Math. Ser., Vol. 55 (U.S. GPO, Washngton, D.C., 1972), p. 686.

    Google Scholar 

  19. 19.

    P. Longe and S. M. Bose, Phys. Rev. B 48, 18239 (1993).

    Article  Google Scholar 

  20. 20.

    O. Sato, Y. Tanaka, and M. Kobayashi, Phys. Rev. B 48, 1947 (1993).

    Article  Google Scholar 

  21. 21.

    V. A. Koval’skii, Extended Abstract of Candidate’s Dissertation in Physics and Mathematics (Inst. Solid State Phys. RAS, Chernogolovka, 2007).

    Google Scholar 

  22. 22.

    A. V. Pogorelov, Differential Geometry (Nauka, Moscow, 1974) [in Russian].

    Google Scholar 

  23. 23.

    L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge Univ. Press, Cambridge, 2006; Fizmatlit, Moscow, 2011).

    Book  Google Scholar 

  24. 24.

    P. K. Kashkarov and V. Yu. Timoshenko, Optics of Solid State and Systems of Reduced Dimensions (Pul’s, Moscow, 2008) [in Russian].

    Google Scholar 

  25. 25.

    V. M. Grabov and N. P. Stepanov, Semiconductors 35, 149 (2001).

    Article  Google Scholar 

  26. 26.

    L. A. Golovan’, V. Yu. Timoshenko, and P. K. Kashkarov, Phys. Usp. 50, 595 (2007).

    Article  Google Scholar 

  27. 27.

    S. Zhou, N. Janel, and G. C. J. Schatz, Chem. Phys. 120, 10871 (2004).

    Article  Google Scholar 

  28. 28.

    I. I. Amirov, E. N. Zhikharev, and V. A. Kalnov, in Proceedings of the International Conference on Modern Problems in Physics of Surfaces and Nanostructures (YB IPT RAS, Yaroslavl, Russia, 2010), p. O3–4.

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. A. Zalutskaya.

Additional information

Original Russian Text © A.A. Zalutskaya, A.V. Prokaznikov, 2014, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2014, No. 6, pp. 86–92.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zalutskaya, A.A., Prokaznikov, A.V. Different coloration of the nanostructured silicon surface upon plasma-assisted etching. J. Synch. Investig. 8, 595–601 (2014). https://doi.org/10.1134/S1027451014030367

Download citation

Keywords

  • Surface Investigation
  • Neutron Technique
  • Waveguide Mode
  • Edge Mode
  • Silicon Plate