Advertisement

Conjugation of phases in pyroboroncarbon

  • V. N. KukinEmail author
Article
  • 35 Downloads

Abstract

Electron microscopy studies of nanoparticles in pyroboroncarbon reveal the pentagonal symmetry of their structure. The nanoparticles consisting of crystal individuals separated by twinning boundaries have icosahedral faceting (habit). As a result of the analysis of experimental high-resolution microphotographs of the nanoparticles via the digital processing of images based on fast Fourier transform, the conditions of phase conjugation in pyroboroncarbon are determined.

Keywords

Boron Basal Plane Surface Investigation Neutron Technique Boron Atom 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. F. Tatarinov, V. S. Virgil’ev, and S. E. Evdokimov, Perspekt. Mater., No. 4, 41 (1999).Google Scholar
  2. 2.
    V. N. Kukin, N. I. Borgardt, A. V. Agafonov, et al., Tech. Phys. Lett. 30, 744 (2004).CrossRefGoogle Scholar
  3. 3.
    V. N. Kukin, N. I. Borgardt, A. V. Agafonov, et al., Zavod. Lab., Diagn. Mater., No. 11, 24 (2005).Google Scholar
  4. 4.
    V. N. Kukin, Bull. Russ. Acad. Sci.: Phys. 75, 1243 (2011).CrossRefGoogle Scholar
  5. 5.
    R. L. Volkov, N. I. Borgardt, and V. N. Kukin, Bull. Russ. Acad. Sci.: Phys. 75, 1227 (2011).CrossRefGoogle Scholar
  6. 6.
    R. L. Volkov, N. I. Borgardt, V. N. Kukin, et al., Tech. Phys. Lett. 39, 822 (2013).CrossRefGoogle Scholar
  7. 7.
    A. Oberlin, Carbon 40, 7 (2002).CrossRefGoogle Scholar
  8. 8.
    R. L. Volkov, N. I. Borgardt, V. N. Kukin, et al., Bull. Russ. Acad. Sci.: Phys. 77, 975 (2013).CrossRefGoogle Scholar
  9. 9.
    J. Ayache, L. Beaunier, J. Boumendil, et al., Sample Preparation Handbook for Transmission Electron Microscopy Techniques (Springer, New York, 2010).CrossRefGoogle Scholar
  10. 10.
    R. L. Volkov, N. I. Borgardt, V. N. Kukin, et al., J. Surf. Invest.: X-Ray, Synchrotron Neutron Tech. 5(5), 900 (2011).CrossRefGoogle Scholar
  11. 11.
    J. Yuan, Y. Chen, D. Han, et al., Nanotecnology 17, 4689 (2006).CrossRefGoogle Scholar
  12. 12.
    B. Q. Li and J. M. Zuo, Phys. Rev. B 72, 085434 (2005).CrossRefGoogle Scholar
  13. 13.
    Q. Lia, M. Shaoa, S. Zhang, et al., J. Cryst. Growth 243, 327 (2002).CrossRefGoogle Scholar
  14. 14.
    J. Urban, H. Sack-Kongehl, and K. Weiss, J. Catal. Lett. 49, 101 (1997).CrossRefGoogle Scholar
  15. 15.
    R. C. Mani and M. K. Sunkara, Diamond Relat. Mater. 12, 324 (2003).CrossRefGoogle Scholar
  16. 16.
    M. Takeguchi, M. Tanaka, H. Yasuda, et al., Surf. Sci. 493, 414 (2001).CrossRefGoogle Scholar
  17. 17.
    M. Klimenkov, W. Matz, S. Nepijko, et al., Nucl. Instrum. Meth. Phys. Res. B 179, 209 (2001).CrossRefGoogle Scholar
  18. 18.
    H. Hubert, D. Devouard, L. Garvie, et al., Nature 391(22), 376 (1998).CrossRefGoogle Scholar
  19. 19.
    T. Okua, K. Hiraga, T. Matsuda, et al., Diamond Relat. Mater. 12, 1918 (2003).CrossRefGoogle Scholar
  20. 20.
    X. Fu, J. Jiang, W. Zhang, et al., Appl. Phys. Lett. 93, 043101 (2008).CrossRefGoogle Scholar
  21. 21.
    V. Domnich, S. Reynaud, R. Haber, et al., J. Am. Ceram. Soc. 94, 3605 (2011).CrossRefGoogle Scholar
  22. 22.
    B. Wei and R. Vajtai, Y. Jung, et al., J. Phys. Chem. B 106, 5807 (2002).Google Scholar
  23. 23.
    V. N. Kukin, S. K. Maksimov, K. A. Drakin, et al., Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 1501 (1991).Google Scholar
  24. 24.
    G. M. Volkov, E. N. Zakharova, and V. I. Kalugin, Khim. Tverd. Topl., No. 4, 155 (1972).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  1. 1.National Research University of Electronic TechnologyZelenograd, MoscowRussia

Personalised recommendations