Skip to main content
Log in

Thermal and chemical passivation of gallium-arsenide films deposited from ablation plasma

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The electric and photoelectric properties of gallium-arsenide films deposited on a polycrystalline corundum substrate from the ablation plasma formed by a high-power ion beam are investigated. It is ascertained that vacuum and air annealing (in the former case, P = 10−2 Pa and T = 300–1200 K) and sulfide chemical passivation in an alcoholic solution affect the characteristics of the dark conductivity and photo-conductivity of the film surfaces. The optimal conditions for thermal and chemical treatment, at which the most stable changes in film the properties are attained, are determined. Enhancement in the stability of the electrical and photoelectric characteristics of films, which is achieved after thermal treatment, arises from the annealing of defects and their clusterization. Sulfide passivation leads to changes in the characteristics and increases the stability of properties under air oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. S. Lunin and A. S. Pashchenko, Tech. Phys. 56, 1291 (2011).

    Article  Google Scholar 

  2. A. P. Gorshkov, I. A. Karpovich, D. O. Filatov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5, 563 (2011).

    Article  Google Scholar 

  3. A. Jaouad, V. Aimez, and Ç. Aktik, Electron. Lett. 40, 1024 (2004).

    Article  Google Scholar 

  4. V. L. Alperovich, O. E. Tereshchenko, N. S. Rudaya, et al., Appl. Surf. Sci. 235, 249 (2004).

    Article  Google Scholar 

  5. C. L. Hinkle, A. M. Sonnet, E. M. Vogel, et al., Appl. Phys. Lett. 91, 163512 (2007).

    Article  Google Scholar 

  6. E. F. Venger, S. I. Kirillova, and V. E. Primachenko, Semiconductors 33, 1088 (1999).

    Article  Google Scholar 

  7. V. G. Bozhkov, V. A. Kagadei, and N. A. Torkhov, Semiconductors 32, 1196 (1998).

    Article  Google Scholar 

  8. Y. Wu, Y. Liu, X. M. Ding, et al., Appl. Surf. Sci. 228, 5 (2004).

    Article  Google Scholar 

  9. J. Riikonen, J. Sormunen, H. Koskenvaara, et al., J. Cryst. Growth 272, 621 (2004).

    Article  Google Scholar 

  10. K.-P. Hsueh, H.-Ts. Hsu, Ch.-H. Wu, and Yu.-M. Hsin, Semicond. Sci. Technol. 19, L118 (2004).

    Article  Google Scholar 

  11. V. Ortiz, J. Nagle, J.-F. Lampin, et al., J. Appl. Phys. 102, 043515-1 (2007).

    Article  Google Scholar 

  12. Masafumi Jo, Takaaki Mano, and Kazuaki Sakoda, Appl. Phys. Express 3, 045502 (2010).

    Article  Google Scholar 

  13. V. M. Mikoushkin, Yu. S. Gordeev, S. Yu. Nikonov, et al., Phys. Status Solidi C 6, 2655 (2009).

    Article  Google Scholar 

  14. X. M. Teng, H. T. Fan, S. S. Pan, et al., J. Vac. Sci. Technol. A 24, 1714 (2006).

    Article  Google Scholar 

  15. H. Reuter, H. Schmitt, and M. Boffgen, Thin Solid Films 254, 96 (1995).

    Article  Google Scholar 

  16. U. Coscia, R. Murri, N. Pinto, and L. Trojani, J. Non-Cryst. Solids 194, 103 (1996).

    Article  Google Scholar 

  17. J. H. D. Da Silva, R. R. Campomanes, D. M. G. Leite, et al., J. Appl. Phys. 96, 7052 (2004).

    Article  Google Scholar 

  18. F. A. Abdel-Wahab and M. F. Kotkata, Physica B 368, 209 (2005).

    Article  Google Scholar 

  19. A. Erlacher, M. Ambrico, V. Capozzi, et al., Semicond. Sci. Technol. 19, 1322 (2004).

    Article  Google Scholar 

  20. V. S. Lopatin, G. E. Remnev, E. G. Furman, et al., Instrum. Exp. Tech. 47, 484 (2004).

    Article  Google Scholar 

  21. V. K. Struts, A. V. Petrov, V. M. Matvienko, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5, 497 (2011).

    Article  Google Scholar 

  22. A. V. Kabyshev, F. V. Konusov, and G. E. Remnev, J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 5, 228 (2011).

    Article  Google Scholar 

  23. M. L. Dmitruk, O. I. Maeva, S. V. Mamykin, and O. B. Yastrubchak, Tech. Phys. Lett. 23, 355 (1997).

    Article  Google Scholar 

  24. V. N. Bessolov and M. V. Lebedev, Semiconductors 32, 1141 (1998).

    Article  Google Scholar 

  25. T. Simonsmeier, A. Ivankov, and W. Bauhofer, J. Appl. Phys. 97, 084910 (2005).

    Article  Google Scholar 

  26. S. M. Avdeev, E. V. Erofeev, and V. A. Kagadei, Semiconductors 45, 1026 (2011).

    Article  Google Scholar 

  27. E. V. Erofeev and V. A. Kagadei, Semiconductors 45, 1148 (2011).

    Article  Google Scholar 

  28. N. A. Bert, A. I. Veinger, M. D. Vilisova, et al., Phys. Solid State 35, 1289 (1993).

    Google Scholar 

  29. X. Liu, A. Prasad, V. M. Chen, et al., Appl. Phys. Lett. 65, 3002 (1994).

    Article  Google Scholar 

  30. G. Brammertz, H. C. Lin, K. Martens, et al., J. Electr. Soc. 155, H945 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Original Russian Text © A.V. Kabyshev, F.V. Konusov, G.E. Remnev, 2014, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, 2014, No. 2, pp. 68–73.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kabyshev, A.V., Konusov, F.V. & Remnev, G.E. Thermal and chemical passivation of gallium-arsenide films deposited from ablation plasma. J. Surf. Investig. 8, 158–163 (2014). https://doi.org/10.1134/S1027451014010285

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451014010285

Keywords

Navigation