Advertisement

Studying the coordination geometry of 3d transition-metal ions in complexes of crown-substituted porphyrins by EXAFS spectroscopy with allowance for multiple scattering

  • A. L. TrigubEmail author
  • Ya. F. Al’Ansari
  • A. A. Veligzhanin
  • Ya. V. Zubavichus
  • A. A. Chernyshov
  • V. E. Baulin
  • A. Yu. Tsivadze
Article

Abstract

The structure of a series of complexes of 3d metals (Co, Ni, and Cu) with substituted porphyrins is studied by X-ray EXAFS spectroscopy. Together with complexes based on tetraphenylporphyrin and octaethylporphyrin with known crystalline structures, new complexes of asymmetrically substituted tetraphenylporphyrin, 5-(4-(((4′-hydroxy-benzo-15-crown-5)-5′-yl)diazo)phenyl)-10,15,20-triphenylporphyrin, are studied. Based on an analysis of experimental spectra with allowance for the contributions of multiple scattering, the coordination parameters of metal atoms at the center of the porphyrin ring are determined: the bond distances and valence angles between them for the first four coordination spheres around metal atoms. The EXAFS spectra are shown to be sensitive to the angular parameters. Differences in the geometric parameters in the series of studied metal-porphyrin complexes are analyzed.

Keywords

Surface Investigation Neutron Technique Valence Angle Porphyrin Ring Angular Parameter 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. M. Kadish, K. M. Smith, and R. Guilard, The Porphyrin Handbook (Academic, San Diego, 2000), Vol. 1, pp. 43–131.Google Scholar
  2. 2.
    N. Cheng, C. Kemna, S. Goubert-Renaudin, and A. Wieckowski, Electrocatalysis 3, 238 (2012).CrossRefGoogle Scholar
  3. 3.
    H. Tributsch, U. I. Koslowski, and I. Dorbant, Electochim. Acta 53, 21989 (2008).CrossRefGoogle Scholar
  4. 4.
    D. C. Koningsberger and R. Prins, X-ray Absorption: Principles, Applications, Techniques of EXAFS, SEXAFS, and XANES, Vol. 92 (Eindhoven, Univ. of Technol., Netherlands, Wiley, New York, 1988), p. 673.Google Scholar
  5. 5.
    A. Filliponi, J. Phys.: Condens. Matter 13(7), R23 (2001).Google Scholar
  6. 6.
    P. D’Angelo, V. Barone, G. Chillemi, N. Sanna, et al., J. Am. Chem. Soc. 124, 1958 (2002).CrossRefGoogle Scholar
  7. 7.
    L. S. Ivashkevich, A. Yu. Kuzmin, D. M. Kochubei, V. V. Kriventsov, et al., J. Surf. Invest.: X-ray, Synchrotron Neutron Tech. 2, 641 (2008).CrossRefGoogle Scholar
  8. 8.
    V. G. Vlasenko, A. I. Uraev, A. S. Burlov, and A. D. Garnovskii, Poverkhnost’, No. 10, 14 (2004).Google Scholar
  9. 9.
    L. A. Avakyan, A. S. Manukyan, A. A. Mizarkhanyan, and E. G. Sharoyan, Opt. Spectrosc. 114, 347 (2013).CrossRefGoogle Scholar
  10. 10.
    B. Ravel and M. Newville, J. Synchrotr. Rad. 12, 537 (2005).CrossRefGoogle Scholar
  11. 11.
    J. J. Rehr, J. J. Kas, F. D. Vila, M. P. Prange, et al., Phys. Chem. Chem. Phys. 12, 5503 (2010).CrossRefGoogle Scholar
  12. 12.
    N. Binsted, EXCURV98, Computer Program (CCLRC Daresbury Laboratory, 1998).Google Scholar
  13. 13.
    A. Filipponi, A. Di Cicco, and C. R. Natoli, Phys. Rev. B 52, 15122 (1995).CrossRefGoogle Scholar
  14. 14.
    A. Filipponi and A. Di Cicco, Phys. Rev. B 52, 15135 (1995).CrossRefGoogle Scholar
  15. 15.
    T. N. Lomova and B. D. Berezin, Koord. Khim. 19, 171 (1993).Google Scholar
  16. 16.
    A. Yu. Tsivadze, Ya. F. Al’ Ansari, V. E. Baulin, and E. V. Savinkina, Russ. J. Coord. Chem. 34, 911 (2008).CrossRefGoogle Scholar
  17. 17.
    A. L. Trigub, Ya. F. Al’ Ansari, A. A. Veligzhanin, Ya. V. Zubavichus, et al., Izv. Vyssh. Uchebn. Zaved., Fiz. 3(2), 187 (2010).Google Scholar
  18. 18.
    A. A. Chernyshov, A. A. Veligzhanin, and Y. V. Zubavichus, Nucl. Instrum. Methods Phys. Res. A 603, 95 (2009).CrossRefGoogle Scholar
  19. 19.
    P. D’Angelo, A. Lapi, V. Magliorati, and A. Arcovito, Inorg. Chem. 47, 9905 (2008).CrossRefGoogle Scholar
  20. 20.
    A. Filipponi, A. Di Cicco, T. A. Tyson, and C. R. Natoli, Solid State Commun. 78, 265 (1991).CrossRefGoogle Scholar
  21. 21.
    W. R. Sheidt and I. Turowska-Tyrk, Inorg. Chem. 33, 1314 (1994).CrossRefGoogle Scholar
  22. 22.
    W. R. Sheidt and J. L. Hoard, J. Am. Chem. Soc. 95, 8281 (1973).CrossRefGoogle Scholar
  23. 23.
    E. F. Meyer, Jr., Acta Crystallogr. B 28, 2162 (1972).CrossRefGoogle Scholar
  24. 24.
    E. B. Fleisher, C. K. Miller, and L. E. Webb, J. Am. Chem. Soc. 86, 2342 (1964).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2014

Authors and Affiliations

  • A. L. Trigub
    • 1
    • 3
    Email author
  • Ya. F. Al’Ansari
    • 2
  • A. A. Veligzhanin
    • 1
    • 3
  • Ya. V. Zubavichus
    • 1
    • 3
  • A. A. Chernyshov
    • 2
  • V. E. Baulin
    • 2
    • 4
  • A. Yu. Tsivadze
    • 2
  1. 1.National Research Center Kurchatov InstituteMoscowRussia
  2. 2.Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussia
  3. 3.Moscow Institute of Physics and TechnologyDolgoprudny, Moscow oblastRussia
  4. 4.Institute of Physiologically Active CompoundsRussian Academy of SciencesChernogolovka, Moscow oblastRussia

Personalised recommendations