Investigation into the adsorption of atomic nitrogen on an Al2O3 (0001) surface

  • K. K. Abgaryan
  • D. I. Bazhanov
  • I. V. Mutigullin
Article

Abstract

Computer simulation of sapphire nitridation used to obtain nitride-based heterostructures (GaN) on an Al2O3 substrate has been performed. The adhesion of atomic nitrogen to the sapphire (0001) surface is investigated ab initio. The possibility of replacing surface-layer oxygen atoms with nitrogen atoms has been examined. The calculated results indicate that adsorbed nitrogen atoms occupy the most stable positions above surface oxygen atoms at different nitrogen concentrations. The changes in the total system energy after replacement of surface oxygen atoms with nitrogen atoms have been calculated. It turns out that oxygen replacement is energetically unfavorable for a single nitrogen adatom. However, this process becomes energetically favorable if the concentration of nitrogen atoms increases. This outcome, obtained for the first time, enables better understanding of the atomic-scale mechanism of sapphire nitridation.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Lundin, E. E. Zavarin, A. I. Besyul’kin, et al., Semiconductors 38, 1323 (2004).CrossRefGoogle Scholar
  2. 2.
    H. Morkoç, Handbook of Nitride Semiconductors and Devices: Materials Properties, in 3 vols. (Wiley-VCH, Weinheim, 2008).CrossRefGoogle Scholar
  3. 3.
    M. Yeadon, M. T. Marshall, F. Hamdani, et al., Mater. Res. Soc. Symp. Proc. 482, 99 (1998).CrossRefGoogle Scholar
  4. 4.
    Yu. N. Drozdov, M. N. Drozdov, O. I. Khrykin, and V. I. Shashkin, J. Surf. Invest. 4, 998 (2010).CrossRefGoogle Scholar
  5. 5.
    F. Dwikusuma and T. F. Kuech, J. Appl. Phys. 94, 5656 (2003).CrossRefGoogle Scholar
  6. 6.
    P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).CrossRefGoogle Scholar
  7. 7.
    G. Kresse and J. Furthmuller, Phys. Rev. B 54, 11169 (1996).CrossRefGoogle Scholar
  8. 8.
    H. Monkhorst and J. Pack, Phys. Rev. B 13, 5188 (1976).CrossRefGoogle Scholar
  9. 9.
    E. A. Soares, M. A. Van Hove, C. F. Walters, et al., Phys. Rev. B 65, 195405 (2002).CrossRefGoogle Scholar
  10. 10.
    G. Renaud, Surf. Sci. Rep. 32, 1 (1998).CrossRefGoogle Scholar
  11. 11.
    R. Di Felice and J. E. Northrup, Phys. Rev. B 60, R16287 (1999).CrossRefGoogle Scholar
  12. 12.
    X. -G. Wang, A. Chaka, and M. Scheffler, Phys. Rev. Lett. 84, 3650 (2000).CrossRefGoogle Scholar
  13. 13.
    E. Wallin, J. M. Andersson, E. P. Münger, et al., Phys. Rev. B 74, 125409 (2004).CrossRefGoogle Scholar
  14. 14.
    C. Verdozzi, D. R. Jennison, P. A. Schultz, et al., Phys. Rev. Lett. 82, 799 (1999).CrossRefGoogle Scholar
  15. 15.
    I. V. Mutigullin, D. I. Bazhanov, and A. S. Ilyushin, Phys. Solid State 53, 599 (2011).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2013

Authors and Affiliations

  • K. K. Abgaryan
    • 1
  • D. I. Bazhanov
    • 2
  • I. V. Mutigullin
    • 1
  1. 1.Dorodnicyn Computing CentreRussian Academy of SciencesMoscowRussia
  2. 2.Faculty of PhysicsMoscow State UniversityMoscowRussia

Personalised recommendations