Advertisement

Investigations of the inductively coupled argon plasma sputtering of Pb1 − x Sn x Te ternary solid solution

  • I. I. Amirov
  • S. P. Zimin
  • E. S. Gorlachev
  • V. V. Naumov
  • E. Abramof
  • P. H. O. Rappl
Article

Abstract

Investigations of the sputtering of films of the Pb1 − x Sn x Te ternary solid solution with 0 ≤ x ≤ 1 in RF high-density low-pressure inductively coupled argon plasma have been performed. The effect of a constant sputtering rate with variation in the composition of the semiconductor solid solution for (111)-oriented films with x < 0.6 and of a sputtering rate decrease with the appearance of (100)-oriented crystallites at x > 0.6 is found. The results are analyzed in the context of a model of ternary alloy sputtering based on the Sigmund solid sputtering theory when taking into account the sublimation energies of binary compounds that constitute a solid solution.

Keywords

Plasma Treatment Neutron Technique PbTe Binary Compound SnTe 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. P. Zimin, I. I. Amirov, and E. S. Gorlachev, Semicond. Sci. Technol. 26, 055018 (2011).CrossRefGoogle Scholar
  2. 2.
    K. A. Tolpin, V. I. Bachurin, and V. E. Yurasova, J. Surf. Invest. 5, 1118 (2011).CrossRefGoogle Scholar
  3. 3.
    S. P. Zimin, E. S. Gorlachev, I. I. Amirov, et al., Semicond. Sci. Technol. 26, 105003 (2011).CrossRefGoogle Scholar
  4. 4.
    A. Khiar, M. Rahim, M. Fill, et al., Appl. Phys. Lett. 97, 151104 (2010).CrossRefGoogle Scholar
  5. 5.
    H. Zogg, M. Arnold, F. Felder, et al., J. Electron. Mater. 37, 1497 (2008).CrossRefGoogle Scholar
  6. 6.
    E. Abramof, E. A. de Andrada e Silva, S. O. Ferreira, et al., Phys. Rev. B 63, 085304 (2001).CrossRefGoogle Scholar
  7. 7.
    P. H. O. Rappl, H. Closs, S. O. Ferreira, et al., J. Cryst. Growth 191, 466 (1998).CrossRefGoogle Scholar
  8. 8.
    A. V. Dmitriev and I. P. Zvyagin, Phys. Usp. 53, 789 (2010).CrossRefGoogle Scholar
  9. 9.
    S. P. Zimin, E. S. Gorlachev, I. I. Amirov, et al., J. Phys. D: Appl. Phys. 42, 165205 (2009).CrossRefGoogle Scholar
  10. 10.
    S. P. Zimin, E. S. Gorlachev, I. I. Amirov, et al., in Proceedings of the International Scientific Conference on Actual Problems of Solid State Physics 2011 (A.N.Varaksin, Minsk, 2011), Vol. 1, p. 243.Google Scholar
  11. 11.
    V. A. Vol’pyas and P. M. Dymashevskii, Tech. Phys. 46, 1347 (2001).CrossRefGoogle Scholar
  12. 12.
    J. M. E. Harper, Plasma Etching: An Introduction (Academic, San Diego, 1989).Google Scholar
  13. 13.
    P. Sigmund, Phys. Rev. 184, 383 (1969).CrossRefGoogle Scholar
  14. 14.
    C. Hirayama, J. Chem. Eng. Data 9, 65 (1964).CrossRefGoogle Scholar

Copyright information

© Pleiades Publishing, Ltd. 2012

Authors and Affiliations

  • I. I. Amirov
    • 1
  • S. P. Zimin
    • 2
  • E. S. Gorlachev
    • 1
    • 2
  • V. V. Naumov
    • 1
  • E. Abramof
    • 3
  • P. H. O. Rappl
    • 3
  1. 1.Yaroslavl Branch of the Institute of Physics and TechnologyRussian Academy of SciencesYaroslavlRussia
  2. 2.Microelectronics DepartmentYaroslavl State UniversityYaroslavlRussia
  3. 3.Laboratório Associado de Sensores e MaterialsInstituto Nacional de Resquisas EspasiaisSão José dos Campos, SPBrazil

Personalised recommendations