Skip to main content
Log in

Spreading of an SR beam spot (diameter 0.5 μm, 95 eV) photoelectron image on the surface of WO3 − x films

  • Published:
Journal of Surface Investigation. X-ray, Synchrotron and Neutron Techniques Aims and scope Submit manuscript

Abstract

The 2D-photoemission image of the beam spot was obtained for the first time for the W5+ oxidation state on the preliminary irradiated WO3 − x thin film surface, created by scanning of the SR beam over the film surface. The W5+ beam profile intensity was found to spread up to a distance of 3.2 μm for an amorphous film and 5.5 μm for a polycrystalline film, it exceeds considerably the beam spot size. The image saturation dose was reached faster for a polycrystalline film. Among the possible mechanisms explaining this phenomenon, for the case of an almost unchangeable O2s state under irradiation, a choice was made in favor of a photon-generated charge diffusion due to low-energy secondary electrons from photoemission, which produce the “coloration” effect, e + W6+ (W5+) W5+ → W5+(W4+). The O512-eV Auger peak was found to degrade at the distance of 1.5–2 mm outside the beam spot under long-time electron beam irradiation, which is attributed to electron-stimulated oxygen desorption and outdiffusion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. G. Granqvist, Appl. Phys. A 57, 3 (1993).

    Article  Google Scholar 

  2. R. A. Dixon, J. J. Williams, D. Morris, et al., Surf. Sci. 399, 199 (1998).

    Article  CAS  Google Scholar 

  3. S. Santucci, C. Cantalini, M. Crivellari, et al., J. Vac. Sci. Technol. A 18, 1077 (2000).

    Article  CAS  Google Scholar 

  4. T. E. Madey, R. Stockbauer, J. F. van der Veen, et al., Phys. Rev. Lett. 45, 187 (1980).

    Article  CAS  Google Scholar 

  5. Luo J. Yi, Zhao Fu Li, Gong Li, et al., Appl. Phys. Lett. 91, 093124 (2007).

    Article  Google Scholar 

  6. G. A. de Wijs, P. K. de Boer, R. A. de Groot, et al., Phys. Rev. B 59, 2684 (1999).

    Article  Google Scholar 

  7. A. Hjelm, C. G. Granqvist, and J. M. Wills, Phys. Rev. B 54, 2436 (1996).

    Article  CAS  Google Scholar 

  8. B. Ingham, S. C. Hendy, S. V. Chong, et al., Phys. Rev. B 72, 075109 (2005).

    Article  Google Scholar 

  9. L. A. Obvintseva, Zh. Ross. Khim. Ob-Va 52, 113 (2008).

    CAS  Google Scholar 

  10. Y. Levi, O. Millo, A. Sharoni, et al., Europhys. Lett. 51, 564 (2000).

    Article  CAS  Google Scholar 

  11. F. Bussolotti, L. Lozzi, M. Passacantando, et al., Science 538, 113 (2003).

    CAS  Google Scholar 

  12. L. Lozzi, M. Passacantando, S. Santucci, et al., Surf. Rev. Lett. 9, 375 (2002).

    Article  CAS  Google Scholar 

  13. L. Lozzi, M. Passacantando, S. Santucci, et al., IEEE Sens. J. 3, 180 (2003).

    Article  CAS  Google Scholar 

  14. F. Barbo, M. Bertolo, A. Bianco, et al., Rev. Sci. Instrum. 71, 5 (2000).

    Article  CAS  Google Scholar 

  15. A. Katrib, F. Hemming, P. Wehrer, et al., Catal. Lett. 29, 397 (1994).

    Article  CAS  Google Scholar 

  16. T. T. Lin and D. Lichtman, J. Appl. Phys. 50, 1298 (1979).

    Article  CAS  Google Scholar 

  17. S. La Rosa, N. Yu. Svetchnikov, S. Santucci, et al., in Proc. of the Sincrotrone Trieste S.C.p.A. 8th Users Meeting, Trieste, Italy, 2000, p. 50.

  18. T. H. Fleisch and G. J. Mains, J. Chem. Phys. 76, 780 (1982).

    Article  CAS  Google Scholar 

  19. A. Gulino, T. S. Parker, F. H. Jones, et al., Chem. Soc. Faraday Trans. 92, 2137 (1996).

    Article  CAS  Google Scholar 

  20. B. L. Henke, J. A. Smith, and D. T. Attwood, J. Appl. Phys. 48, 1852 (1977).

    Article  CAS  Google Scholar 

  21. B. L. Henke, J. Liesegang, and S. D. Smith, Phys. Rev. B 19, 3004 (1979).

    Article  CAS  Google Scholar 

  22. J. Quin, Phys. Rev. 126, 1453 (1962).

    Article  Google Scholar 

  23. G. A. Harrower, Phys. Rev. 104, 52 (1956).

    Article  CAS  Google Scholar 

  24. A. I. Burshtein, Usp. Fiz. Nauk 143, 553 (1984) [Sov. Phys. Usp. 27, 579 (1984)].

    Article  CAS  Google Scholar 

  25. V. N. Berger, Yu. L. Kolesnikov, and A. V. Sechkarev, Opt. Spektrosk. 78, 249 (1995) [Opt. Spectrosc. 78, 221 (1995)].

    Google Scholar 

  26. G. Blasse, J. Chem. Phys. 45, 2356 (1966).

    Article  CAS  Google Scholar 

  27. K. Nishimura, J. Kawata, and K. Ohya, J. Plasma Fusion Res. 6, 535 (1996).

    Google Scholar 

  28. I. M. Bronshtein and B. S. Fraiman, Secondary Electron Emission (Nauka, Moscow, 1969) [in Russian].

    Google Scholar 

  29. R. S. Crandall and B. W. Faughnan, Appl. Phys. Lett. 26, 120 (1975).

    Article  CAS  Google Scholar 

  30. T. He and J. Yao, J. Mater. Chem. 17, 4547 (2007).

    Article  CAS  Google Scholar 

  31. G. Garcia-Belmonte, G.-J. Canadas, J. Bisquert, et al., Solid State Ionics 177, 1635 (2006).

    Article  CAS  Google Scholar 

  32. C. Sunseri, F. Di Quarto, and A. Di Paola, J. Appl. Electrochem. 10, 669 (1980).

    Article  CAS  Google Scholar 

  33. G. Vázquez and I. González, Electrochim. Acta 52, 6771 (2007).

    Article  Google Scholar 

  34. E. Sikora, J. Sikora, and D. D. MacDonald, Electrochim. Acta 41, 783 (1996).

    Article  CAS  Google Scholar 

  35. C. Bechinger, S. Herrninghaus, and P. Leiderer, Thin Solid Films 239, 156 (1994).

    Article  CAS  Google Scholar 

  36. R. S. Crandal and B. W. Faughnan, Phys. Rev. Lett. 39, 232 (1977).

    Article  Google Scholar 

  37. M. G. Hutchins, O. Abu-Alkhair, M. M. El-Nahass, and K. Abdel-Hady, J. Phys.: Condens. Matter 18, 9987 (2006).

    Article  CAS  Google Scholar 

  38. M. L. Knotek, Rep. Prog. Phys. 47, 1499 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Yu. Svechnikov.

Additional information

Original Russian Text © N.Yu. Svechnikov, 2011, published in Poverkhnost’. Rentgenovskie, Sinkhrotronnye i Neitronnye Issledovaniya, No. 1, pp. 25–34.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Svechnikov, N.Y. Spreading of an SR beam spot (diameter 0.5 μm, 95 eV) photoelectron image on the surface of WO3 − x films. J. Surf. Investig. 5, 21–29 (2011). https://doi.org/10.1134/S1027451011010186

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1027451011010186

Keywords

Navigation