Advertisement

Mechanical twinning of yttrium oxide single crystals

  • M. Sh. Akchurin
  • R. M. Zakalyukin
  • M. V. Kovalchuk
  • I. I. Kupenko
Article

Abstract

The deformation structure of an yttrium oxide single crystal under point load was studied by microhardness and electron microscopy. It was concluded that mechanical twinning is the main mechanism of plastic deformation of these single crystals. A twin was simulated by rotating the structure around the three-fold axis. It was shown that the average change of the distance between anions was about 5% and that between cations was 15%. The comparison with the structure of the regions of the fluorite single crystals and optical ceramics deformed in the analogous manner was performed.

Keywords

Neutron Technique Point Load Yttrium Oxide Mechanical Twinning Threefold Axis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Sh. Akchurin, V. G. Galstyan, and V. R. Regel’, Izv. Akad. Nauk SSSR, Ser. Fiz. 55, 1556 (1991).Google Scholar
  2. 2.
    M. Sh. Akchurin, V. G. Galstyan, and V. R. Regel’, Fiz. Tverd. Tela 37, 845 (1995) [Phys. Solid State 37, 459(1995)].Google Scholar
  3. 3.
    M. Sh. Akchurin and V. R. Regel, Chem. Rev. 23, 59 (1998).Google Scholar
  4. 4.
    M. Sh. Akchurin and V. G. Galstyan, Dokl. Akad. Nauk SSSR 252, 870 (1980) [Sov. Phys. Dokl. 25, 411 (1980)].Google Scholar
  5. 5.
    M. Sh. Akchurin, V. G. Galstyan, V. R. Regel’, et al., Poverkhnost: Fiz., Khim., Mekh., No. 3, 119 (1983).Google Scholar
  6. 6.
    A. A. Kaminskii and V. V. Osiko, Izv. Akad. Nauk SSSR, Neorg. Mater. 1, 629 (1970).Google Scholar
  7. 7.
    A. I. Kuznetsov, V. N. Abramov, N. S. Rooze, et al., Pis’ma Zh. Eksp. Teor. Fiz. 28, 652 (1978) [JETP Lett. 28, 602(1978)].Google Scholar
  8. 8.
    G. B. Lushchik and A. G. Lushchik, Decay of Electronic Excitations with Defect Formation in Solids (Nauka, Moscow, 1989) [in Russian].Google Scholar
  9. 9.
    A. A. Kaminskii, M. Sh. Akchurin, R. V. Gainutdinov, et al., Kristallografiya 50, 935 (2005) [Crystallogr. Rep. 50, 869(2005)].Google Scholar
  10. 10.
    M. Sh. Akchurin, R. V. Gainutdinov, R. M. Zakalyukin, et al., Dokl. Akad. Nauk 415(3), 1 (2007) [Dokl. Phys. 52,373(2007)].Google Scholar
  11. 11.
    M. Sh. Akchurin, R. V. Gainutdinov, R. M. Zakalyukin, et al., Poverkhnost’, No. 9, 42 (2008) [J. Surf. Invest. 2, 716(2008)].Google Scholar
  12. 12.
    M. V. Klassen-Neklyudova, Mechanical Twinning of Crystals (Akad. Nauk SSSR, Moscow, 1960; Consultants Bureau, New York, 1964).Google Scholar
  13. 13.
    V. L. Indenbom, Kristallografiya 4, 758 (1959) [Sov. Phys. Crystallogr. 4, 724 (1959)].Google Scholar
  14. 14.
    M. Sh. Akchurin and R. V. Galiulin, Kristallografiya 48, 514 (2003) [Crystallogr. Rep. 48, 469 (2003)].Google Scholar
  15. 15.
    M. Sh. Akchurin, R. V. Gainutdinov, and A. A. Kaminskii, Poverkhnost’, No. 9, 78 (2006).Google Scholar

Copyright information

© Pleiades Publishing, Ltd. 2010

Authors and Affiliations

  • M. Sh. Akchurin
    • 1
  • R. M. Zakalyukin
    • 1
  • M. V. Kovalchuk
    • 1
  • I. I. Kupenko
    • 1
  1. 1.A. V. Shubnikov Institute of CrystallographyRussian Academy of SciencesMoscowRussia

Personalised recommendations